The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY
-
Published:2009-05-14
Issue:9
Volume:9
Page:3113-3136
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Hoor P.,Borken-Kleefeld J.,Caro D.,Dessens O.,Endresen O.,Gauss M.,Grewe V.,Hauglustaine D.,Isaksen I. S. A.,Jöckel P.,Lelieveld J.,Myhre G.,Meijer E.,Olivie D.,Prather M.,Schnadt Poberaj C.,Shine K. P.,Staehelin J.,Tang Q.,van Aardenne J.,van Velthoven P.,Sausen R.
Abstract
Abstract. To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference81 articles.
1. Andreae, M. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001. 2. Berntsen, T., Fuglestvedt, J., Joshi, M., Shine, K., Stuber, N., Ponater, M., Sausen, R., Hauglustaine, D., and Li, L.: Climate response to regional emissions of ozone precursors: sensitivities and warming potentials, Tellus B, 57B, 283–304, 2005. 3. Bian, H. and Prather, M.: Fast-J2: Accurate Simulation of stratospheric photolysis in global chemical models, J. Atmos. Sci., 41, 281–296, 2002. 4. Borken, J. and Steller, H.: Report on the Draft Emission Inventories for Road Transport in the year 2000, Tech. rep., Deutsches Institut für Luft- und Raumfahrt (DLR), Institut für Verkehrsforschung, 2006. 5. Borken, J., Steller, H., Meretei, T., and Vanhove, F.: Global and country inventory of road passenger and freight transportation – Their fuel consumption and their emissions of air pollutants in the year 2000, Transport. Res. Rec., 2011, https://doi.org/10.3141/2011-14, 2007.
Cited by
135 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|