Historical and projected future runoff over the Mekong River basin
-
Published:2024-01-29
Issue:1
Volume:15
Page:75-90
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Wang Chao, Leisz Stephen, Li LiORCID, Shi XiaoyingORCID, Mao JiafuORCID, Zheng Yi, Chen AnpingORCID
Abstract
Abstract. The Mekong River (MR) crosses the borders and connects six countries, including China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. It provides critical water resources and supports natural and agricultural ecosystems, socioeconomic development, and the livelihoods of the people living in this region. Understanding changes in the runoff of this important international river under projected climate change is critical for water resource management and climate change adaptation planning. However, research on long-term runoff dynamics for the MR and the underlying drivers of runoff variability remains scarce. Here, we analyse historical runoff variations from 1971 to 2020 based on runoff gauge data collected from eight hydrological stations along the MR. With these runoff data, we then evaluate the runoff simulation performance of five global hydrological models (GHMs) forced by four global climate models (GCMs) under the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Furthermore, based on the best simulation combination, we quantify the impact of future climate change on river runoff changes in the MR. The result shows that the annual runoff in the MR has not changed significantly in the past 5 decades, while the establishment of dams and reservoirs in the basin visibly affected the annual runoff distribution. The ensemble-averaged result of the Water Global Assessment and Prognosis version 2 (WaterGAP2; i.e. GHM) forced by four GCMs has the best runoff simulation performance. Under Representative Concentration Pathways (RCPs; i.e. RCP2.6, RCP6.0 and RCP8.5), the runoff of the MR is projected to increase significantly (p<0.05); e.g. 3.81 ± 3.47 m3s-1a-1 (9 ± 8 % increase in 100 years) at the upper reach under RCP2.6 and 16.36 ± 12.44 m3s-1a-1 (13 ± 10 % increase in 100 years) at the lower reach under RCP6.0. In particular, under the RCP6.0 scenario, the increase in annual runoff is most pronounced in the middle and lower reaches, due to increased precipitation and snowmelt. Under the RCP8.5 scenario, the runoff distribution in different seasons varies obviously, increasing the risk of flooding in the wet season and drought in the dry season.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Reference53 articles.
1. Adamson, P. T., Rutherfurd, I. D., Peel, M. C., and Conlan, I. A.: The hydrology of the Mekong River, in: The Mekong, edited by: Campbell, I. C., Elsevier, 53–76, https://doi.org/10.1016/B978-0-12-374026-7.00004-8, 2009. a 2. Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, 2003. a 3. Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401, 2016. a 4. Arnell, N. W., van Vuuren, D. P., and Isaac, M.: The implications of climate policy for the impacts of climate change on global water resources, Global Environ. Chang., 21, 592–603, 2011. a 5. Bihrat, Ö. and Bayazit, M.: The power of statistical tests for trend detection, Turkish Journal of Engineering and Environmental Sciences, 27, 247–251, 2003. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|