Distribution-based pooling for combination and multi-model bias correction of climate simulations

Author:

Vrac MathieuORCID,Allard DenisORCID,Mariéthoz Grégoire,Thao Soulivanh,Schmutz LucasORCID

Abstract

Abstract. For investigating, assessing, and anticipating climate change, tens of global climate models (GCMs) have been designed, each modelling the Earth system slightly differently. To extract a robust signal from the diverse simulations and outputs, models are typically gathered into multi-model ensembles (MMEs). Those are then summarized in various ways, including (possibly weighted) multi-model means, medians, or quantiles. In this work, we introduce a new probability aggregation method termed “alpha pooling” which builds an aggregated cumulative distribution function (CDF) designed to be closer to a reference CDF over the calibration (historical) period. The aggregated CDFs can then be used to perform bias adjustment of the raw climate simulations, hence performing a “multi-model bias correction”. In practice, each CDF is first transformed according to a non-linear transformation that depends on a parameter α. Then, a weight is assigned to each transformed CDF. This weight is an increasing function of the CDF closeness to the reference transformed CDF. Key to the α pooling is a parameter α that describes the type of transformation and hence the type of aggregation, generalizing both linear and log-linear pooling methods. We first establish that α pooling is a proper aggregation method by verifying some optimal properties. Then, focusing on climate model simulations of temperature and precipitation over western Europe, several experiments are run in order to assess the performance of α pooling against methods currently available, including multi-model means and weighted variants. A reanalysis-based evaluation as well as a perfect model experiment and a sensitivity analysis to the set of climate models are run. Our findings demonstrate the superiority of the proposed pooling method, indicating that α pooling presents a potent way to combine GCM CDFs. The results of this study also show that our unique concept of CDF pooling strategy for multi-model bias correction is a credible alternative to usual GCM-by-GCM bias correction methods by allowing handling and considering several climate models at once.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Reference77 articles.

1. Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019. a

2. Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., and Chung, E.-S.: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics, Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, 2019. a

3. Allard, D., Comunian, A., and Renard, P.: Probability aggregation methods in geoscience, Math. Geosci., 44, 545–581, https://doi.org/10.1007/s11004-012-9396-3, 2012. a, b, c

4. Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J., Cassou, C., Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S., Cruz, F., Dentener, F., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J., Fyfe, J., Gillett, N., Goldfarb, L., Gorodetskaya, I., Gutierrez, J., Hamdi, R., Hawkins, E., Hewitt, H., Hope, P., Islam, A., Jones, C., Kaufman, D., Kopp, R., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T., Meinshausen, M., Min, S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée, J.-B., Samset, B., Sathyendranath, S., Seneviratne, S., Sörensson, A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical Summary, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 33–144, https://doi.org/10.1017/9781009157896.002, 2021. a

5. Bhat, K. S., Haran, M., Terando, A., and Keller, K.: Climate Projections Using Bayesian Model Averaging and Space–Time Dependence, J. Agr. Biol. Environ. Stat., 16, 606–628, https://doi.org/10.1007/s13253-011-0069-3, 2011. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3