Intensified future heat extremes linked with increasing ecosystem water limitation
-
Published:2024-06-11
Issue:3
Volume:15
Page:717-734
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Denissen Jasper M. C., Teuling Adriaan J.ORCID, Koirala Sujan, Reichstein MarkusORCID, Balsamo Gianpaolo, Vogel Martha M.ORCID, Yu XinORCID, Orth RenéORCID
Abstract
Abstract. Heat extremes have severe implications for human health, ecosystems, and the initiation of wildfires. While they are mostly introduced by atmospheric circulation patterns, the intensity of heat extremes is modulated by terrestrial evaporation associated with soil moisture availability. Thereby, ecosystems provide evaporative cooling through plant transpiration and soil evaporation, which can be reduced under water stress. While it has been shown that regional ecosystem water limitation is projected to increase in the future, the respective repercussions on heat extremes remain unclear. In this study, we use projections from 12 Earth system models to show that projected changes in heat extremes are amplified by increasing ecosystem water limitation in regions across the globe. We represent the ecosystem water limitation with the ecosystem limitation index (ELI) and quantify temperature extremes through the differences between the warm-season mean and maximum temperatures. We identify hotspot regions in tropical South America and across Canada and northern Eurasia where relatively strong trends towards increased ecosystem water limitation jointly occur with amplifying heat extremes. This correlation is governed by the magnitude of the ELI trends and the present-day ELI which denotes the land–atmosphere coupling strength determining the temperature sensitivity to evaporative cooling. Many regions where ecosystem functioning is predominantly energy-limited or transitional in the present climate exhibit strong trends towards increasing the water limitation and simultaneously experience the largest increases in heat extremes. Sensitivity of temperature excess trends to ELI trends is highest in water-limited regions, such that in these regions relatively small ELI trends can amount to drastic temperature excess trends. Therefore, considering the ecosystem's water limitation is key for assessing the intensity of future heat extremes and their corresponding impacts.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference108 articles.
1. Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P., Muñoz-Sabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing, J. Hydrometeorol., 14, 1259–1277, https://doi.org/10.1175/JHM-D-12-0161.1, 2013. 2. Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2013. 3. Berg, A. and Sheffield, J.: Climate Change and Drought: the Soil Moisture Perspective, Curr. Clim. Change Rep., 4, 180–191, https://doi.org/10.1007/s40641-018-0095-0, 2018. 4. Berg, A., Sheffield, J., and Milly, P. C. D.: Divergent surface and total soil moisture projections under global warming, Geophys. Res. Lett., 44, 236–244, https://doi.org/10.1002/2016GL071921, 2017. 5. Budyko, M. I.: Climate and life, Academic Press, ISBN 978-0-12-139450-9, 1974.
|
|