The Cretaceous and Cenozoic tectonic evolution of Southeast Asia

Author:

Zahirovic S.ORCID,Seton M.,Müller R. D.ORCID

Abstract

Abstract. Tectonic reconstructions of Southeast Asia have given rise to numerous controversies which include the accretionary history of Sundaland and the enigmatic tectonic origin of the Proto South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the opening and closure history of paleo-ocean basins, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the Late Jurassic, driven by northward slab pull, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid Cretaceous and subsequently accreted to the Sunda margin (i.e. southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea Plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the Proto South China Sea from ∼65 Ma, consistent with extension along east Asia and the emplacement of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from east China, which accreted to northern Borneo in the mid Eocene, to account for the Sarawak Orogeny. Rifting then re-initiated along southeast China by 37 Ma to open the South China Sea, resulting in the complete consumption of Proto South China Sea by ∼17 Ma when the collision of the Dangerous Grounds and northern Palawan blocks with northern Borneo choked the subduction zone to result in the Sabah Orogeny and the obduction of ophiolites in Palawan and Mindoro. We conclude that the counterclockwise rotation of Borneo was accommodated by oroclinal bending consistent with paleomagnetic constraints, the curved lithospheric lineaments observed in gravity anomalies of the Java Sea and the curvature of the Cretaceous Natuna paleo-subduction zone. We complete our model by constructing a time-dependent network of continuously closing plate boundaries and gridded paleo-ages of oceanic basins, allowing us to test our plate model evolution against seismic tomography. In particular, slabs observed at depths shallower than ∼1000 km beneath northern Borneo and the South China Sea are likely to be remnants of the Proto South China Sea basin.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3