Dynamics of N<sub>2</sub> fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

Author:

Bonnet Sophie,Berthelot Hugo,Turk-Kubo Kendra,Fawcett Sarah,Rahav Eyal,L'Helguen Stéphane,Berman-Frank Ilana

Abstract

Abstract. N2 fixation rates were measured daily in large (∼ 50 m3) mesocosms deployed in the tropical southwest Pacific coastal ocean (New Caledonia) to investigate the temporal variability in N2 fixation rates in relation with environmental parameters and study the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. The mesocosms were fertilized with  ∼ 0.8 µM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L−1 d−1 over the 23 days, and increased by a factor of 2 during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L−1 d−1. These later rates measured after the DIP fertilization are higher than the upper range reported for the global ocean. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP), and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during a bloom of the unicellular diazotroph UCYN-C that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ∼ 10 % of UCYN-C from the water column was exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 µm) UCYN-C cells into large (100–500 µm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer-scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labeling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton, mainly picoplankton (18 ± 4 %) followed by diatoms (3 ± 2 %). This is consistent with the observed dramatic increase in picoplankton and diatom abundances, primary production, bacterial production, and standing stocks of POC, PON, and POP in the mesocosms during the second half of the experiment. These results offer insights into the fate of DDN during a bloom of UCYN-C in low-nutrient, low-chlorophyll ecosystems.

Funder

Agence Nationale de la Recherche

Institut National des Sciences de l'Univers, Centre National de la Recherche Scientifique

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3