Global scenarios of anthropogenic mercury emissions

Author:

Brocza Flora MariaORCID,Rafaj Peter,Sander Robert,Wagner Fabian,Jones Jenny Marie

Abstract

Abstract. Anthropogenic mercury (Hg) emissions to the atmosphere are a long-lived hazard to human and environmental health. The UN Minamata Convention on Mercury is seeking to lower anthropogenic mercury emissions through a mix of policies from banning certain Hg uses to reducing unintentional Hg release from different activities. In addition to independent Hg policy, strategies to mitigate greenhouse gases, particulate matter (PM) and SO2 may also lower Hg emissions as a co-benefit. This study uses the Greenhouse Gas–Air Pollution Interactions and Synergies (GAINS) model to examine the effect of different clean air and climate policies on future global Hg emissions. The baseline scenario assumes current trends for energy use and Hg emissions as well as current legislation for clean air, mercury and climate policy. In addition, we explore the impact of the Minamata Convention, the co-benefits of climate and stringent air pollution policies, and maximum feasible reduction measures for Hg. Hg emission projections until 2050 show noticeable reductions in combustion sectors for all scenarios due to a decrease in global fossil fuel and traditional biomass use, leading to emission reductions of 33 % at baseline and up to 90 % when combining stringent climate controls and the most efficient Hg controls. Cement and non-ferrous metal emissions increase in all scenarios with current air pollution policy but could be reduced by up to 72 % and 46 %, respectively, in 2050 with stringent Hg-specific measures. Other emissions (including waste) are a significant source of uncertainty in this study, and their projections range between a 22 % increase and a 54 % decrease in 2050, depending on both climate and clean air policy. The largest absolute reduction potential for Hg abatement but also the largest uncertainties regarding absolute emissions lie in small-scale and artisanal gold production, where abatement measures could eliminate annual Hg emissions in the range of 601–1371 t (95 % confidence interval), although the uncertainties in the estimate are so high that they might eclipse reduction efforts in all other sectors. In total, 90 % of Hg emissions are covered by provisions of the Minamata Convention. Overall, the findings emphasize the necessity to implement targeted Hg control policies in addition to stringent climate, PM and SO2 policies to achieve significant reductions in Hg emissions.

Funder

Research Councils UK

International Institute for Applied Systems Analysis

Publisher

Copernicus GmbH

Reference53 articles.

1. Aarhus Protocol: Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution on Heavy Metals, CHAPTER XXVII – ENVIRONMENT, Aarhus, 24 June 1998, https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-1-f&chapter=27&clang=_en (last access: 5 April 2024).

2. Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Modell. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012, 2011.

3. Amann, M., Kiesewetter, G., Schoepp, W., Klimont, Z., Winiwarter, W., Cofala, J., Rafaj, P., Hoglund-Isaksson, L., Gomez Sanabria, A., Heyes, C., Purohit, P., Borken-Kleefeld, J., Wagner, F., Sander, R., Fagerli, H., Nyiri, A., Cozzi, L., and Pavarini, C.: Reducing global air pollution: The scope for further policy interventions, Philos. T. R. Soc. A, 378, 1–27, https://doi.org/10.1098/rsta.2019.0331, 2020.

4. AMAP/UN Environment: Technical Background Report for the Global Mercury Assessment 2013, Arctic Monitoring and Assessment Programme, Arctic Monitoring, Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, 2013.

5. AMAP/UN Environment: Technical Background Report to the Global Mercury Assessment 2018, Troms: Arctic Monitoring; Assessment Programme, Oslo, Norway/UN Environment Programme, Chemicals; Health Branch, https://www.unep.org/resources/publication/global-mercury-assessment-technical-background-report (last access: 18 June 2024), 2019.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3