Application of the Complete Data Fusion algorithm to the ozone profiles measured by geostationary and low-Earth-orbit satellites: a feasibility study

Author:

Zoppetti NicolaORCID,Ceccherini SimoneORCID,Carli Bruno,Del Bianco SamueleORCID,Gai Marco,Tirelli Cecilia,Barbara Flavio,Dragani Rossana,Arola AnttiORCID,Kujanpää JukkaORCID,van Peet Jacob C. A.ORCID,van der A RonaldORCID,Cortesi UgoORCID

Abstract

Abstract. The new platforms for Earth observation from space are characterized by measurements made at great spatial and temporal resolutions. While this abundance of information makes it possible to detect and study localized phenomena, it may be difficult to manage this large amount of data for the study of global and large-scale phenomena. A particularly significant example is the use by assimilation systems of Level 2 products that represent gas profiles in the atmosphere. The models on which assimilation systems are based are discretized on spatial grids with horizontal dimensions of the order of tens of kilometres in which tens or hundreds of measurements may fall in the future. A simple procedure to overcome this problem is to extract a subset of the original measurements, but this involves a loss of information. Another option is the use of simple averages of the profiles, but this approach also has some limitations that we will discuss in the paper. A more advanced solution is to resort to the so-called fusion algorithms, capable of compressing the size of the dataset while limiting the information loss. A novel data fusion method, the Complete Data Fusion algorithm, was recently developed to merge a set of retrieved products in a single product a posteriori. In the present paper, we apply the Complete Data Fusion method to ozone profile measurements simulated in the thermal infrared and ultraviolet bands in a realistic scenario. Following this, the fused products are compared with the input profiles; comparisons show that the output products of data fusion have smaller total errors and higher information contents in general. The comparisons of the fused products with the fusing products are presented both at single fusion grid box scale and with a statistical analysis of the results obtained on large sets of fusion grid boxes of the same size. We also evaluate the grid box size impact, showing that the Complete Data Fusion method can be used with different grid box sizes even if this possibility is connected to the natural variability of the considered atmospheric molecule.

Funder

Horizon 2020 Framework Programme

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3