Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern Pyrenees, 1570 m a.s.l.)
-
Published:2014-04-30
Issue:8
Volume:14
Page:4279-4295
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ripoll A., Pey J., Minguillón M. C.ORCID, Pérez N., Pandolfi M., Querol X., Alastuey A.ORCID
Abstract
Abstract. Time variation of mass particulate matter (PM1 and PM1&minus10), black carbon (BC) and number of particles (N3: number of particles with an aerodynamic diameter higher than 3 nm, and N10: higher than 10 nm) concentrations at the high-altitude site of Montsec (MSC) in the southern Pyrenees was interpreted for the period 2010–2012. At MSC, PM10 (12 μg m−3) and N7 (2140 # cm−3) three-year arithmetic average concentrations were higher than those measured at other high-altitude sites in central Europe during the same period (PM10: 3–9 μg m−3 and N: 634–2070 # cm−3). By contrast, BC concentrations at MSC (0.2 μg m−3) were equal to or even lower than those measured at these European sites (0.2–0.4 μg m−3). These differences were attributed to the higher relevance of Saharan dust transport and to the higher importance of the biogenic precursor emissions and new particle formation (NPF) processes, and to the lower influence of anthropogenic emissions at MSC. The different time variation of PM and BC concentrations compared with that of N suggests that these aerosol parameters were governed by diverse factors at MSC. Both PM and BC concentrations showed marked differences for different meteorological scenarios, with enhanced concentrations under North African air outbreaks (PM1&minus10: 13 μg m−3, PM1: 8 μg m−3 and BC: 0.3 μg m−3) and low concentrations when Atlantic advections occurred (PM1−10: 5 μg m−3, PM1: 4 μg m−3 and BC: 0.1 μg m−3). PM and BC concentrations increased in summer, with a secondary maximum in early spring, and were at their lowest in winter, due to the contrasting origin of the air masses in the warmer seasons (spring and summer) and in the colder seasons (autumn and winter). The maximum in the warmer seasons was attributed to long-range transport processes that mask the breezes and regional transport breaking the daily cycles of these pollutants. By contrast, PM and BC concentrations showed clear diurnal cycles, with maxima at midday in the colder seasons. A statistically significant weekly variation was also obtained for the BC concentrations, displaying a progressive increase from Tuesday to Saturday, followed by a significant decrease on Sunday and Monday. N concentrations depended more on local meteorological variables such as temperature and solar radiation intensity than on the origin of the air mass. Therefore, arithmetic averages as a function of meteorological episodes showed the highest concentrations of N during summer regional episodes (N3: 4461 # cm−3 and N7: 3021 # cm−3) and the lowest concentrations during winter regional scenarios (N3: 2496 # cm−3 and N7: 1073 # cm−3). This dependence on temperature and solar radiation also accounted for the marked diurnal cycle of N concentrations throughout the year, with a peak at midday and for the absence of a weekly pattern. Measurements carried out at MSC enabled us to characterize the tropospheric background aerosols in the western Mediterranean basin (WMB). Our results highlight the importance of the NPF processes in southern Europe, underline the high contribution of long-range dust transport with respect to central Europe and its prevalence in elevated layers, and reveal that MSC is much less affected by anthropogenic emissions than other high-altitude sites in central Europe.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference49 articles.
1. Andrews, E., Ogren, J. A., Bonasoni, P., Marinoni, A., Cuevas, E., Rodríguez, S., Sun, J. Y., Jaffe, D. A., Fischer, E. V., Baltensperger, U., Weingartner, E., Collaud Coen, M., Sharma, S., Macdonald, A. M., Leaitch, W. R., Lin, N.-H., Laj, P., Arsov, T., Kalapov, I., Jefferson, A., and Sheridan, P.: Climatology of aerosol radiative properties in the free troposphere, Atmos. Res., 102, 365–393, https://doi.org/10.1016/j.atmosres.2011.08.017, 2011. 2. Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., De Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505–5538, https://doi.org/10.5194/acp-11-5505-2011, 2011. 3. Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A., Weingartner, E., Baltensperger, U., Bukowiecki, N., Lihavainen, H., Kivekäs, N., Asmi, E., Aalto, P. P., Kulmala, M., Wiedensohler, A., Birmili, W., Hamed, A., O'Dowd, C., G Jennings, S., Weller, R., Flentje, H., Fjaeraa, A. M., Fiebig, M., Myhre, C. L., Hallar, A. G., Swietlicki, E., Kristensson, A., and Laj, P.: Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations, Atmos. Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-2013, 2013. 4. Baltensperger, U., Gfiggeler, H. W., Jost, D. T., Lugauer, M., Schwikowski, M. and Weingartner, E.: Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland, J. Geophys. Res., 102, 19707–19715, 1997. 5. Barmet, P., Kuster, T., Muhlbauer, A., and Lohmann, U.: Weekly cycle in particulate matter versus weekly cycle in precipitation over Switzerland, J. Geophys. Res., 114, D05206, https://doi.org/10.1029/2008JD011192, 2009.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|