Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM<sub>10</sub>) over central China

Author:

Fu P. Q.ORCID,Kawamura K.ORCID,Cheng Y. F.ORCID,Hatakeyama S.,Takami A.,Li H.,Wang W.

Abstract

Abstract. Atmospheric aerosol samples were collected by aircraft at low to middle altitudes (0.8–3.5 km a.g.l.) over central East to West China during summer 2003 and spring 2004. The samples were analyzed for polar organic compounds using a technique of solvent extraction/BSTFA derivatization/gas chromatography–mass spectrometry. Biogenic secondary organic aerosol (SOA) tracers from the oxidation of isoprene were found to be more abundant in summer (3.3–138 ng m−3, mean 39 ng m−3) than in spring (3.2–42 ng m−3, 15 ng m−3), while α/β-pinene and β-caryophyllene SOA tracers showed similar abundances between these two seasons. A strong positive correlation (R2 = 0.83) between levoglucosan and β-caryophyllinic acid was found in the spring samples vs. a weak correlation (R2 = 0.17) in the summer samples, implying substantial contributions from biomass burning to the β-caryophyllinic acid production in spring. Two organic nitrogen species (oxamic acid and carbamide) were detected in the aircraft aerosol samples, and their concentrations were comparable to those of biogenic SOA tracers. Most of the primary organic aerosol (POA) and SOA tracers were less abundant at higher altitudes, suggesting they are of ground surface origin, either being directly emitted from anthropogenic/natural sources on the ground surface, or rapidly formed through photooxidation of their precursors emitted from the ground surface and then diluted during uplifting into the troposphere. This study demonstrates that primary biological aerosols, biogenic SOA, and organic nitrogen species are important components of organic aerosols in the troposphere over central China during warm seasons.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3