Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM<sub>10</sub>) over central China
-
Published:2014-04-25
Issue:8
Volume:14
Page:4185-4199
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Fu P. Q.ORCID, Kawamura K.ORCID, Cheng Y. F.ORCID, Hatakeyama S., Takami A., Li H., Wang W.
Abstract
Abstract. Atmospheric aerosol samples were collected by aircraft at low to middle altitudes (0.8–3.5 km a.g.l.) over central East to West China during summer 2003 and spring 2004. The samples were analyzed for polar organic compounds using a technique of solvent extraction/BSTFA derivatization/gas chromatography–mass spectrometry. Biogenic secondary organic aerosol (SOA) tracers from the oxidation of isoprene were found to be more abundant in summer (3.3–138 ng m−3, mean 39 ng m−3) than in spring (3.2–42 ng m−3, 15 ng m−3), while α/β-pinene and β-caryophyllene SOA tracers showed similar abundances between these two seasons. A strong positive correlation (R2 = 0.83) between levoglucosan and β-caryophyllinic acid was found in the spring samples vs. a weak correlation (R2 = 0.17) in the summer samples, implying substantial contributions from biomass burning to the β-caryophyllinic acid production in spring. Two organic nitrogen species (oxamic acid and carbamide) were detected in the aircraft aerosol samples, and their concentrations were comparable to those of biogenic SOA tracers. Most of the primary organic aerosol (POA) and SOA tracers were less abundant at higher altitudes, suggesting they are of ground surface origin, either being directly emitted from anthropogenic/natural sources on the ground surface, or rapidly formed through photooxidation of their precursors emitted from the ground surface and then diluted during uplifting into the troposphere. This study demonstrates that primary biological aerosols, biogenic SOA, and organic nitrogen species are important components of organic aerosols in the troposphere over central China during warm seasons.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference82 articles.
1. Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008. 2. Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H.: Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmos. Environ., 42, 588–593, 2008. 3. Bernhard, A. M., Czekaj, I., Elsener, M., Wokaun, A., and Krocher, O.: Evaporation of urea at atmospheric pressure, J. Phys. Chem. A, 115, 2581–2589, 2011. 4. Byers, H. R.: Nucleation in the atmosphere, Ind. Eng. Chem., 57, 32–40, 1965. 5. Cahill, T. M., Seaman, V. Y., Charles, M. J., Holzinger, R., and Goldstein, A. H.: Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California, J. Geophys. Res.-Atmos., 111, D16312, https://doi.org/10.1029/2006JD007178, 2006.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|