The use of hierarchical clustering for the design of optimized monitoring networks

Author:

Soares Joana,Makar Paul Andrew,Aklilu Yayne,Akingunola Ayodeji

Abstract

Abstract. Associativity analysis is a powerful tool to deal with large-scale datasets by clustering the data on the basis of (dis)similarity and can be used to assess the efficacy and design of air quality monitoring networks. We describe here our use of Kolmogorov–Zurbenko filtering and hierarchical clustering of NO2 and SO2 passive and continuous monitoring data to analyse and optimize air quality networks for these species in the province of Alberta, Canada. The methodology applied in this study assesses dissimilarity between monitoring station time series based on two metrics: 1−R, R being the Pearson correlation coefficient, and the Euclidean distance; we find that both should be used in evaluating monitoring site similarity. We have combined the analytic power of hierarchical clustering with the spatial information provided by deterministic air quality model results, using the gridded time series of model output as potential station locations, as a proxy for assessing monitoring network design and for network optimization. We demonstrate that clustering results depend on the air contaminant analysed, reflecting the difference in the respective emission sources of SO2 and NO2 in the region under study. Our work shows that much of the signal identifying the sources of NO2 and SO2 emissions resides in shorter timescales (hourly to daily) due to short-term variation of concentrations and that longer-term averages in data collection may lose the information needed to identify local sources. However, the methodology identifies stations mainly influenced by seasonality, if larger timescales (weekly to monthly) are considered. We have performed the first dissimilarity analysis based on gridded air quality model output and have shown that the methodology is capable of generating maps of subregions within which a single station will represent the entire subregion, to a given level of dissimilarity. We have also shown that our approach is capable of identifying different sampling methodologies as well as outliers (stations' time series which are markedly different from all others in a given dataset).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference83 articles.

1. Airdata warehouse: Government of Alberta, available at: http://airdata.alberta.ca/, last access: 5 May 2018.

2. Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M. D., and Zheng, Q.: A chemical transport model study of plume rise and particle size distribution for the Athabasca oil sands, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-155, in review, 2018.

3. Alberta Environment and Parks (AEP): Development of Performance Specifications for Continuous Ambient Air Monitoring Analyzers, Government of Alberta, AEP, Alberta, Canada, 2014.

4. Alberta Environment and Parks (AEP): Air Monitoring Directive Chapter 4: Monitoring Requirements and Equipment Technical Specifications, Government of Alberta, AEP, Air, No. 1–4, Alberta, Canada, 2016.

5. Bari, M. A., Curran, R. T. L., and Kindzierski, W. B.: Field performance evaluation of Maxxam passive samplers for regional monitoring of ambient SO2, NO2 and O3 concentrations in Alberta, Canada, Atmos. Environ., 114, 39–47, 2015.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3