An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
-
Published:2018-01-19
Issue:2
Volume:18
Page:655-671
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Holben Brent N.ORCID, Kim JhoonORCID, Sano Itaru, Mukai SonoyoORCID, Eck Thomas F., Giles David M., Schafer Joel S., Sinyuk Aliaksandr, Slutsker Ilya, Smirnov AlexanderORCID, Sorokin Mikhail, Anderson Bruce E., Che Huizheng, Choi MyungjeORCID, Crawford James H., Ferrare Richard A., Garay Michael J., Jeong Ukkyo, Kim Mijin, Kim Woogyung, Knox NicholaORCID, Li Zhengqiang, Lim Hwee S.ORCID, Liu YangORCID, Maring Hal, Nakata Makiko, Pickering Kenneth E., Piketh Stuart, Redemann JensORCID, Reid Jeffrey S., Salinas Santo, Seo Sora, Tan FuyiORCID, Tripathi Sachchida N., Toon Owen B., Xiao Qingyang
Abstract
Abstract. Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference93 articles.
1. Andrews, E., Ogren, J. A., Kinne, S., and Samset, B.: Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements, Atmos. Chem. Phys., 17, 6041–6072, https://doi.org/10.5194/acp-17-6041-2017, 2017. 2. Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and Holmén, K.: Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003. 3. Artaxo, P., Gerab, F., Yamasoe, M. A., and Martins, J. V.: Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin, J. Geophys. Res., 99, 22857–22868, https://doi.org/10.1029/94JD01023, 1994. 4. Ben-Ami, Y., Koren, I., Rudich, Y., Artaxo, P., Martin, S. T., and Andreae, M. O.: Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study, Atmos. Chem. Phys., 10, 7533–7544, https://doi.org/10.5194/acp-10-7533-2010, 2010. 5. Bergstrom, R. W., Pilewskie, P., Schmid, B., and Russell, P. B.: Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000, J. Geophys. Res., 108, 8474, https://doi.org/10.1029/2002JD002435, 2003.
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|