The airglow layer emission altitude cannot be determined unambiguously from temperature comparison with lidars

Author:

Dunker Tim

Abstract

Abstract. I investigate the nightly mean emission height and width of the OH* (3–1) layer by comparing nightly mean temperatures measured by the ground-based spectrometer GRIPS 9 and the Na lidar at ALOMAR. The data set contains 42 coincident measurements taken between November 2010 and February 2014, when GRIPS 9 was in operation at the ALOMAR observatory (69.3∘ N, 16.0∘ E) in northern Norway. To closely resemble the mean temperature measured by GRIPS 9, I weight each nightly mean temperature profile measured by the lidar using Gaussian distributions with 40 different centre altitudes and 40 different full widths at half maximum. In principle, one can thus determine the altitude and width of an airglow layer by finding the minimum temperature difference between the two instruments. On most nights, several combinations of centre altitude and width yield a temperature difference of ±2 K. The generally assumed altitude of 87 km and width of 8 km is never an unambiguous, good solution for any of the measurements. Even for a fixed width of ∼ 8.4 km, one can sometimes find several centre altitudes that yield equally good temperature agreement. Weighted temperatures measured by lidar are not suitable to unambiguously determine the emission height and width of an airglow layer. However, when actual altitude and width data are lacking, a comparison with lidars can provide an estimate of how representative a measured rotational temperature is of an assumed altitude and width. I found the rotational temperature to represent the temperature at the commonly assumed altitude of 87.4 km and width of 8.4 km to within ±16 K, on average. This is not a measurement uncertainty.

Funder

Norges Forskningsråd

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3