Opening Pandora's box: reducing global circulation model uncertainty in Australian simulations of the carbon cycle

Author:

Teckentrup LinaORCID,De Kauwe Martin G.ORCID,Abramowitz GabORCID,Pitman Andrew J.,Ukkola Anna M.,Hobeichi Sanaa,François BastienORCID,Smith BenjaminORCID

Abstract

Abstract. Climate projections from global circulation models (GCMs), part of the Coupled Model Intercomparison Project 6 (CMIP6), are often employed to study the impact of future climate on ecosystems. However, especially at regional scales, climate projections display large biases in key forcing variables such as temperature and precipitation. These biases have been identified as a major source of uncertainty in carbon cycle projections, hampering predictive capacity. In this study, we open the proverbial Pandora's box and peer under the lid of strategies to tackle climate model ensemble uncertainty. We employ a dynamic global vegetation model (LPJ-GUESS) and force it with raw output from CMIP6 to assess the uncertainty associated with the choice of climate forcing. We then test different methods to either bias-correct or calculate ensemble averages over the original forcing data to reduce the climate-driven uncertainty in the regional projection of the Australian carbon cycle. We find that all bias correction methods reduce the bias of continental averages of steady-state carbon variables. Bias correction can improve model carbon outputs, but carbon pools are insensitive to the type of bias correction method applied for both individual GCMs and the arithmetic ensemble average across all corrected models. None of the bias correction methods consistently improve the change in simulated carbon over time compared to the target dataset, highlighting the need to account for temporal properties in correction or ensemble-averaging methods. Multivariate bias correction methods tend to reduce the uncertainty more than univariate approaches, although the overall magnitude is similar. Even after correcting the bias in the meteorological forcing dataset, the simulated vegetation distribution presents different patterns when different GCMs are used to drive LPJ-GUESS. Additionally, we found that both the weighted ensemble-averaging and random forest approach reduce the bias in total ecosystem carbon to almost zero, clearly outperforming the arithmetic ensemble-averaging method. The random forest approach also produces the results closest to the target dataset for the change in the total carbon pool, seasonal carbon fluxes, emphasizing that machine learning approaches are promising tools for future studies. This highlights that, where possible, an arithmetic ensemble average should be avoided. However, potential target datasets that would facilitate the application of machine learning approaches, i.e., that cover both the spatial and temporal domain required to derive a robust informed ensemble average, are sparse for ecosystem variables.

Funder

Australian Research Council

Climate Extremes

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3