Calibration of a crop model to irrigated water use using a genetic algorithm

Author:

Bulatewicz T.,Jin W.,Staggenborg S.,Lauwo S.,Miller M.,Das S.,Andresen D.,Peterson J.,Steward D. R.,Welch S. M.

Abstract

Abstract. Near-term consumption of groundwater for irrigated agriculture in the High Plains Aquifer supports a dynamic bio-socio-economic system, all parts of which will be impacted by a future transition to sustainable usage that matches natural recharge rates. Plants are the foundation of this system and so generic plant models suitable for coupling to representations of other component processes (hydrologic, economic, etc.) are key elements of needed stakeholder decision support systems. This study explores utilization of the Environmental Policy Integrated Climate (EPIC) model to serve in this role. Calibration required many facilities of a fully deployed decision support system: geo-referenced databases of crop (corn, sorghum, alfalfa, and soybean), soil, weather, and water-use data (4931 well-years), interfacing heterogeneous software components, and massively parallel processing (3.8×109 model runs). Bootstrap probability distributions for ten model parameters were obtained for each crop by entropy maximization via the genetic algorithm. The relative errors in yield and water estimates based on the parameters are analyzed by crop, the level of aggregation (county- or well-level), and the degree of independence between the data set used for estimation and the data being predicted.

Publisher

Copernicus GmbH

Reference91 articles.

1. Aigner, D. J. and Goldfeld, S. M.: Estimation and prediction from aggregate data when aggregates are measured more accurately than their components, Econometrica, 42, 113–134, 1974.

2. Arbi, N., Smith, D., and Bingham, E. T.: Dry matter and morphological responses to temperatures of alfalfa strains with differing ploidy levels, Agron J., 71, 573–577, 1979.

3. Berck, P. and Helfand, G.: Reconciling the von Liebig and differentiable crop production functions, Am. J. Agr. Econ., 72(4), 985–996, 1990.

4. Bernard, E. A., Peterson, J. M., and Steward, D. R.: A coupled hydrologic-economic modeling tool to support groundwater management decisions, in: Proceedings of the 2004 High Plains Groundwater Resources: Challenges and Opportunities, p. 82, Lubbock, Texas, 7–9 December, 2004.

5. Bernard, E. A., Steward, D. R., and Le Grand, P.: A geodatabase for groundwater modeling in mlaem and modflow, in: Proceedings of the 2005 ESRI International User Conference, number Paper 1633, 1–25, San Diego, California, 25–29 July 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3