Statistical downscaling of precipitation: state-of-the-art and application of bayesian multi-model approach for uncertainty assessment

Author:

Hashmi M. Z.,Shamseldin A. Y.,Melville B. W.

Abstract

Abstract. Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, the GCM outputs cannot be used directly due to the mismatch in the spatial resolution between the GCMs and hydrological models. In order to use the output of a GCM for conducting hydrological impact studies, downscaling is used. However, the downscaling results may contain considerable uncertainty which needs to be quantified before making the results available. Among the variables usually downscaled, precipitation downscaling is quite challenging and is more prone to uncertainty issues than other climatological variables. This paper addresses the uncertainty analysis associated with statistical downscaling of a watershed precipitation (Clutha River above Balclutha, New Zealand) using results from three well reputed downscaling methods and Bayesian weighted multi-model ensemble approach. The downscaling methods used for this study belong to the following downscaling categories; (1) Multiple linear regression; (2) Multiple non-linear regression; and (3) Stochastic weather generator. The results obtained in this study have shown that this ensemble strategy is very efficient in combining the results from multiple downscaling methods on the basis of their performance and quantifying the uncertainty contained in this ensemble output. This will encourage any future attempts on quantifying downscaling uncertainties using the multi-model ensemble framework.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3