Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical–biogeochemical model ECOSMO

Author:

Daewel Ute,Schrum CorinnaORCID

Abstract

Abstract. Here we present results from a long-term model simulation of the 3-D coupled ecosystem model ECOSMO II for a North Sea and Baltic Sea set-up. The model allows both multi-decadal hindcast simulation of the marine system and specific process studies under controlled environmental conditions. Model results have been analysed with respect to long-term multi-decadal variability in both physical and biological parameters with the help of empirical orthogonal function (EOF) analysis. The analysis of a 61-year (1948–2008) hindcast reveals a quasi-decadal variation in salinity, temperature and current fields in the North Sea in addition to singular events of major changes during restricted time frames. These changes in hydrodynamic variables were found to be associated with changes in ecosystem productivity that are temporally aligned with the timing of reported regime shifts in the areas. Our results clearly indicate that for analysing ecosystem productivity, spatially explicit methods are indispensable. Especially in the North Sea, a correlation analysis between atmospheric forcing and primary production (PP) reveals significant correlations between PP and the North Atlantic Oscillation (NAO) and wind forcing for the central part of the region, while the Atlantic Multi-decadal Oscillation (AMO) and air temperature are correlated to long-term changes in PP in the southern North Sea frontal areas. Since correlations cannot serve to identify causal relationship, we performed scenario model runs perturbing the temporal variability in forcing condition to emphasize specifically the role of solar radiation, wind and eutrophication. The results revealed that, although all parameters are relevant for the magnitude of PP in the North Sea and Baltic Sea, the dominant impact on long-term variability and major shifts in ecosystem productivity was introduced by modulations of the wind fields.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3