Integral equation analysis of complex (M)MIC-structures with optimized system matrix decomposition and novel quadrature techniques

Author:

Vaupel T.,Hansen V.

Abstract

Abstract. Using integral equation methods for the analysis of complex (M)MIC structures, the computation and storage effort for the solution of the linear systems of equations with their fully populated matrices still forms the main bottleneck. In the last years, remarkable improvements could be achieved by means of diakoptic methods and related preconditiners. In this contribution, we present a method based on the optimized decomposition of the system matrix depending on the circuit topology. The system matrix is splitted in a densely populated matrix and a mainly blockdiagonal matrix with overlapping submatrices. The latter matrix is used for the generation of high performance preconditioners within Krylov subspace methods using sparsified matrix storage methods, adaptive Cholesky decompositions and optimized forward/backward substitutions. Furthermore, we present an integration technique using a complete analytical treatment for the strongly oscillating parts of the spectral domain integrands allowing the analysis of very large structures as compared to the wavelength.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3