Search for the 531-day-period wobble signal in the polar motion based on EEMD

Author:

Ding H.,Shen W.

Abstract

Abstract. In this study, we use a nonlinear and non-stationary time series analysis method, the ensemble empirical mode decomposition method (EEMD), to analyze the polar motion (PM) time series (EOP C04 series from 1962 to 2013) to find a 531-day-period wobble (531 dW) signal. The 531 dW signal has been found in the early PM series (1962–1977), but cannot be found in the recent PM series (1978–2013) using conventional analysis approaches. By virtue of the demodulation feature of EEMD, the 531 dW can be confirmed to be present in PM based on the differences of the amplitudes and phases between different intrinsic mode functions. Results from three sub-series divided from the EOP C04 series show that the period of the 531 dW is subject to variations, in the range of 530.9–524 days, and its amplitude is also time-dependent (about 2–11 mas). Synthetic tests are carried out to explain why the 531 dW can only be observed in recent 30-year PM time series after using EEMD. The 531 dW is also detected in the two longest available superconducting gravimeter (SG) records, which further confirms the presence of the 531 dW. The confirmation of the 531 dW existence could be significant in establishing a more reasonable Earth rotation model and may effectively contribute to the prediction of the PM and its mechanism interpretation.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3