Snow water equivalent measurement in the Arctic based on cosmic ray neutron attenuation

Author:

Jitnikovitch Anton,Marsh PhilipORCID,Walker Branden,Desilets Darin

Abstract

Abstract. Grounded in situ, or invasive, cosmic ray neutron sensors (CRNSs) may allow for continuous, unattended measurements of snow water equivalent (SWE) over complete winter seasons and allow for measurements that are representative of spatially variable Arctic snow covers, but few studies have tested these types of sensors or considered their applicability at remote sites in the Arctic. During the winters of 2016/2017 and 2017/2018 we tested a grounded in situ CRNS system at two locations in Canada: a cold, low- to high-SWE environment in the Canadian Arctic and at a warm, low-SWE landscape in southern Ontario that allowed easier access for validation purposes. Five CRNS units were applied in a transect to obtain continuous data for a single significant snow feature; CRNS-moderated neutron counts were compared to manual snow survey SWE values obtained during both winter seasons. The data indicate that grounded in situ CRNS instruments appear able to continuously measure SWE with sufficient accuracy utilizing both a linear regression and nonlinear formulation. These sensors can provide important SWE data for testing snow and hydrological models, water resource management applications, and the validation of remote sensing applications.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference52 articles.

1. Ball, J.: Soil and water relationships, Noble Research Institute, available at: https://www.noble.org/news/publications/ (last access: 15 October 2021), 2001.

2. Bartol, J.: Listening for cosmic rays, Based upon report number 5 of the scientific report series of the Aurora Research Institute, Aurora College, Inuvik, NWT, Canada, 1999.

3. Blencowe, J., Moore, S., Young, G., Shearer, R. Hagerstrom, R., Conley W., and Potter, J.: U.S. Soil Department of Agriculture, 462, Washington, DC, USA, 1960.

4. Bogena, H., Herrmann, F., Jakobi, J., Brogi, C., Ilias, A., Huisman, A., Panagopoulos, A., and Pisinaras V.: Monitoring of snowpack dynamics with cosmic-ray neutron probes: a comparison of four conversion methods, Front. Water, 2, 19, https://doi.org/10.3389/frwa.2020.00019, 2020.

5. Bush, E. and Lemmen, D.: Canada's changing climate report, Government of Canada, Ottawa, Ontario, 444 pp., 2019.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3