Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere – Part 1: Basic concepts of the measurement technique

Author:

Galkin V. D.,Immler F.,Alekseeva G. A.,Berger F.-H.,Leiterer U.,Naebert T.,Nikanorova I. N.,Novikov V. V.,Pakhomov V. P.,Sal'nikov I. B.

Abstract

Abstract. We retrieved the total content of the atmospheric water vapor (or Integrated Water Vapor, IWV) from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The reliability of the empirical parameters, used for the power approximation that links the water vapor content with the observed absorption, is analyzed. Currently, the total (from measurements, calibration, and calculations) errors yield the standard uncertainty of about 10 % in the total column water vapor. We discuss the possibilities for improving the accuracy of calibration to ~1 % as indispensable condition in order to make it possible to use data obtained by optical photometry as an independent reference for other methods (GPS, MW-radiometers, lidar, etc).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference39 articles.

1. Alekseeva, G., Galkin, V., and Kamionko, L.: Water vapor content in the atmosphere for different sites of Armenia, Pamir and Chile, Astronomicheskiy circular, 1296, 6–8, 1983.

2. Alekseeva, G., Galkin, V., and Sal'nikov, I.: Laboratory investigation of absorption of the water vapor in the wavelength range from 6500 to 10 500 Å, Izv. Main Astronomical Observatory Pulkovo, English version is available (free access without time limit) at: http://arxiv.org/abs/1010.3568, last access: 7 April 2011, Russ. Acad. Sci., 208, 116–125, 1994.

3. Alekseeva, G. A., Bogoroditskaya, N. V., Mikhel'Son, N. N., Novikov, V. V., Olonova, T. P., Pakhomov, V. P., and Sosnina, M. A.: Version of the optical system of the Pulkovo Stellar Photometer, J. Opt. Technol., 62(9), 629–630, 1995.

4. Alekseeva, G., Arkharov, A., Galkin, V., Hagen-Torn, E., Nikanorova, I., Novikov, V., Novopashanny, V., Pakhomov, V., Ruban, E., and Shchegolev, D.: The Pulkovo spectrophotometric catalog of bright stars in the range from 320 to 1080 nm, Balt. Astron., 5(4), 603-838, 1996

5. 6, 481-496 (A Supplement), 1997.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accuracy in starphotometry;Atmospheric Measurement Techniques;2021-10-12

2. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data;Atmospheric Measurement Techniques;2018-05-08

3. Solar activity and atmospheric water vapor;Geomagnetism and Aeronomy;2015-12

4. Column water vapor determination in night period with a lunar photometer prototype;Atmospheric Measurement Techniques;2013-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3