An Efficient Surrogate-based Multi-objective Optimisation Framework with Novel Sampling Strategy for Sustainable Island Groundwater Management

Author:

Yu Weijiang,Baù DomenicoORCID,Mayer Alex S.,Geranmehr MohammadaliORCID

Abstract

Abstract. In groundwater pumping optimization (GPO), offline-trained data-driven surrogates can be used to replace numerical-intensive simulators in order to save computing time. The traditional offline training approach involves building surrogates prior to optimization, fitting training datasets that cover the input space uniformly or randomly, which can prove inefficient due to the potential oversampling of low-gradient areas and under-sampling of high-gradient areas. This study proposes an offline machine-learning (ML) algorithm that ranks candidate training points by scoring them based on their distance to the closest training point and on the local gradient of the surrogate estimate and then choosing the highest-rank point. This method is applied to develop surrogates for solving a two-objective GPO problem formulated on a three-dimensional (3D) island aquifer, using hydrogeological conditions representative of San Salvador Island, Bahamas. The objectives are to minimise the supply cost (fOC) resulting from groundwater pumping and desalination and maximise fresh groundwater supply (Qp), subject to constraints on seawater intrusion (SWI) control expressed in terms of aquifer drawdown Δs at pumping locations and aquifer salt mass increase ΔSM. Gaussian Process (GP) is the technique applied to construct surrogates of objectives and constraints, alongside the estimation of uncertainties. Using GP models, it is possible to estimate the probability of “Pareto optimality” for each pumping scheme by Monte Carlo simulation. Pareto optimal pumping schemes (POPS) are then characterized by a probability of occurrence, which can be verified by numerical simulation. The GP training strategy's effectiveness in generating POPS is compared to traditional training approaches, showing that such a strategy can efficiently identify reliable POPS.

Funder

Engineering and Physical Sciences Research Council

National Science Foundation

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3