MEDSLIK-II, a Lagrangian marine oil spill model for short-term forecasting – Part 2: Numerical simulations and validations

Author:

De Dominicis M.,Pinardi N.ORCID,Zodiatis G.,Archetti R.ORCID

Abstract

Abstract. In this paper we use MEDSLIK-II, a Lagrangian marine oil spill model described in Part 1 of this paper (De Dominicis et al., 2013), to simulate oil slick transport and transformation processes for realistic oceanic cases where satellite or drifting buoys data are available for verification. The model is coupled with operational oceanographic currents, atmospheric analyses winds and remote-sensing data for initialization. The sensitivity of the oil spill simulations to several model parameterizations is analyzed and the results are validated using surface drifters and SAR (Synthetic Aperture Radar) images in different regions of the Mediterranean Sea. It is found that the forecast skill of Lagrangian trajectories largely depends on the accuracy of the Eulerian ocean currents: the operational models give useful estimates of currents, but high-frequency (hourly) and high spatial resolution is required, and the Stokes drift velocity has to be often added, especially in coastal areas. From a numerical point of view, it is found that a realistic oil concentration reconstruction is obtained using an oil tracer grid resolution of about 100 m, with at least 100 000 Lagrangian particles. Moreover, sensitivity experiments to uncertain model parameters show that the knowledge of oil type and slick thickness are, among all the others, key model parameters affecting the simulation results. Considering acceptable for the simulated trajectories a maximum spatial error of the order of three times the horizontal resolution of the Eulerian ocean currents, the predictability skill for particle trajectories is from 1 to 2.5 days depending on the specific current regime. This suggests that re-initialization of the simulations is required every day.

Publisher

Copernicus GmbH

Reference40 articles.

1. Abascal, A., Castanedo, S., Mendez, F., Medina, R., and Losada, I.: Calibration of a Lagrangian transport model using drifting buoys deployed during the Prestige oil spill, J. Coast. Res., 25, 10.2112/07-0849.1, 80–90, 2009.

2. Al-Rabeh, A.: Estimating surface oil spill transport due to wind in the Arabian Gulf, Ocean Eng., 21, 461–465, 1994.

3. Al-Rabeh, A. H., Lardner, R. W., and Gunay, N.: Gulfspill Version 2.0: a software package for oil spills in the Arabian Gulf, Environ. Model. Softw., 15, 425–442, 2000.

4. Archetti, R.: Design of surface drifter for the oil spill monitoring, in: R}evue P}aralia. {Conf{é}rence {M{é}diterran{é}enne C{ô}tière et Maritime, Coastal and Maritime Mediterranean Conference, {H}ammamet, {T}unisi, 1, 231–234, 2009.

5. ASCE: State-of-the-Art {R}eview of Modeling Transport and Fate of Oil Spills, J. Hydraulic Eng., 122, 594–609, 1996.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3