Modelling sea-level fingerprints of glaciated regions with low mantle viscosity

Author:

Bartholet Alan,Milne Glenn A.,Latychev Konstantin

Abstract

Abstract. Global patterns of sea-level change – often termed “sea-level fingerprints” – associated with future changes in ice/water mass re-distribution are a key component in generating regional sea-level projections. Calculation of these fingerprints is commonly based on the assumption that the isostatic response of the Earth is dominantly elastic on century timescales. While this assumption is accurate for regions underlain by mantle material with viscosity close to that of global average estimates, recent work focusing on the West Antarctic region has shown that this assumption can lead to significant error where the viscosity is significantly lower than typical global average values. Here, we test this assumption for fingerprints associated with glaciers and ice caps. We compare output from a (1D) elastic Earth model to that of a 3D viscoelastic model that includes low-viscosity mantle in three glaciated regions: Alaska, southwestern Canada, and the southern Andes (Randolph Glacier Inventory (RGI) regions 1, 2, and 17, respectively). This comparison indicates that the error incurred by ignoring the non-elastic response is of the order of 1 mm in most areas (or about 1 % of the barystatic signal) over the 21st century with values reaching the centimetre level in glaciated regions. However, in glaciated regions underlain by low-viscosity mantle, the non-elastic deformation can result in relative sea-level changes with magnitudes of up to several tens of centimetres (or several times the barystatic value). The magnitude and spatial pattern of this non-elastic signal is sensitive to variations in both the projected ice history and regional viscosity structure, indicating the need for loading models with high spatial resolution and improved constraints on regional Earth viscosity structure to accurately simulate sea-level fingerprints in these regions. The anomalously low mantle viscosity in these regions also amplifies the glacial isostatic adjustment signal associated with glacier changes during the 20th century, causing it to be an important (and even dominant) contributor to the modelled relative sea-level changes over the 21st century.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. Austermann, J., Mitrovica, J. X., Latychev, K., and Milne., G. A.: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate, Nat. Geosci., 6, 553–557, 2013.

2. Brocher, T. M., Parsons, T., Tréhu, A. M., Crosson, R. S., Snelson, C. M., and Fisher, M. A.: Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia Margin, Geology, 31, 267–270, 2003.

3. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J. Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK; New York, NY, USA, 1137–12162013.

4. Clark, J. A., Farrell, W. E., and Peltier, W. R.: Global changes in postglacial sea level: a numerical calculation, Quaternary Res., 9, 265–287, 1978.

5. Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. In., 25, 297–356, 1981.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3