Verification of the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) ozone algorithms based on retrieved daytime and night-time ozone

Author:

Wang Wannan,Cheng Tianhai,van der A Ronald J.ORCID,de Laat Jos,Williams Jason E.

Abstract

Abstract. Ozone (O3) plays a significant role in weather and climate on regional to global spatial scales. Most studies on the variability in the total column of O3 (TCO) are typically carried out using daytime data. Based on knowledge of the chemistry and transport of O3, significant deviations between daytime and night-time O3 are only expected either in the planetary boundary layer (PBL) or high in the stratosphere or mesosphere, with little effect on the TCO. Hence, we expect the daytime and night-time TCO to be very similar. However, a detailed evaluation of satellite measurements of daytime and night-time TCO is still lacking, despite the existence of long-term records of both. Thus, comparing daytime and night-time TCOs provides a novel approach to verifying the retrieval algorithms of instruments such as the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS). In addition, such a comparison also helps to assess the value of night-time TCO for scientific research. Applying this verification on the AIRS and the MLS data, we identified inconsistencies in observations of O3 from both satellite instruments. For AIRS, daytime–night-time differences were found over oceans resembling cloud cover patterns and over land, mostly over dry land areas, which is likely related to infrared surface emissivity. These differences point to issues with the representation of both processes in the AIRS retrieval algorithm. For MLS, a major issue was identified with the “ascending–descending” orbit flag, used to discriminate night-time and daytime MLS measurements. Disregarding this issue, MLS day–night differences were significantly smaller than AIRS day–night differences, providing additional support for the retrieval method origin of AIRS in stratospheric column ozone (SCO) day–night differences. MLS day–night differences are dominated by the upper-stratospheric and mesospheric diurnal O3 cycle. These results provide useful information for improving infrared O3 products.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference83 articles.

1. AIRS Science Team/Joao Teixeira: AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only), 1∘ × 1∘, V006, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA, https://doi.org/10.5067/Aqua/AIRS/DATA303, 2013a.

2. AIRS Science Team/Joao Teixeira: AIRS/Aqua L2 Standard Physical Retrieval (AIRS-only), V006, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA, https://doi.org/10.5067/Aqua/AIRS/DATA202, 2013b.

3. American Meteorological Society: https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/ (last access: 13 April 2020), 2011.

4. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003.

5. Aumann, H. H., Broberg, S. E., Manning, E. M., Pagano, T. S., and Wilson, R. C.: Evaluating the Absolute Calibration Accuracy and Stability of AIRS Using the CMC SST, Remote Sens.-Basel, 12, 2743, https://doi.org/10.3390/rs12172743, 2020.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3