Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra

Author:

Frankenberg C.ORCID,Wunch D.ORCID,Toon G.,Risi C.,Scheepmaker R.,Lee J.-E.,Wennberg P.,Worden J.

Abstract

Abstract. Remote sensing of the isotopic composition of water vapor can provide valuable information on the hydrological cycle. Here, we demonstrate the feasibility of retrievals of the relative abundance of HDO (the HDO/H2O ratio) from the Japanese GOSAT satellite. For this purpose, we use high spectral resolution nadir radiances around 6400 cm−1 (1.56 μm) to retrieve vertical column amounts of H2O and HDO. Retrievals of H2O correlate well with ECMWF (European Centre for Medium-Range Weather Forecasts) integrated profiles (r2 = 0.96). Typical precision errors in the retrieved column-averaged deuterium depletion (δD) are 20–40‰. We compare δD against a TCCON (Total Carbon Column Observing Network) ground-based station in Lamont, Oklahoma. Using retrievals in very dry areas over Antarctica, we detect a small systematic offset in retrieved H2O and HDO column amounts and take this into account for a bias correction of δD. Monthly averages of δD in the June 2009 to September 2011 time frame are well correlated with TCCON (r2 = 0.79) and exhibit a slope of 0.98 (1.23 if not bias corrected). We also compare seasonal averages on the global scale with results from the SCIAMACHY instrument in the 2003–2005 time frame. Despite the lack of temporal overlap, seasonal averages in general agree well, with spatial correlations (r2) ranging from 0.62 in September through November to 0.83 in June through August. However, we observe higher variability in GOSAT δD, indicated by fitted slopes between 1.2 and 1.46. The discrepancies are likely related to differences in vertical sensitivities but warrant further validation of both GOSAT and SCIAMACHY and an extension of the validation dataset.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3