What drives the spatial variability of primary productivity and matter fluxes in the north-west African upwelling system? A modelling approach

Author:

Auger Pierre-AmaëlORCID,Gorgues Thomas,Machu Eric,Aumont Olivier,Brehmer PatriceORCID

Abstract

Abstract. A comparative box analysis based on a multi-decadal physical–biogeochemical hindcast simulation (1980–2009) was conducted to characterize the drivers of the spatial distribution of phytoplankton biomass and production in the north-west (NW) African upwelling system. Alongshore geostrophic flow related to large-scale circulation patterns associated with the influence of coastal topography is suggested to modulate the coastal divergence, and then the response of nutrient upwelling to wind forcing. In our simulation, this translates into a coastal upwelling of nitrate being significant in all regions but the Cape Blanc (CB) area. However, upwelling is found to be the dominant supplier of nitrate only in the northern Saharan Bank (NSB) and the Senegalo-Mauritanian (SM) regions. Elsewhere, nitrate supply is dominated by meridional advection, especially off Cape Blanc. Phytoplankton displays a similar behaviour with a supply by lateral advection which equals the net coastal phytoplankton growth in all coastal regions except the Senegalo-Mauritanian area. Noticeably, in the Cape Blanc area, the net coastal phytoplankton growth is mostly sustained by high levels of regenerated production exceeding new production by more than twofold, which is in agreement with the locally weak input of nitrate by coastal upwelling. Further offshore, the distribution of nutrients and phytoplankton is explained by the coastal circulation. Indeed, in the northern part of our domain (i.e. Saharan Bank), the coastal circulation is mainly alongshore, resulting in low offshore lateral advection of nutrients and phytoplankton. Conversely, lateral advection transports coastal nutrients and phytoplankton towards offshore areas in the latitudinal band off the Senegalo-Mauritanian region. Moreover, this latter offshore region benefits from transient southern intrusions of nutrient-rich waters from the Guinean upwelling.

Funder

Seventh Framework Programme

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3