Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia

Author:

Li XuemeiORCID,Liu Xinyu,Zhao Kaixin,Zhang Xu,Li LanhaiORCID

Abstract

Abstract. The acceleration of climate warming has led to a faster solid–liquid water cycle and a decrease in solid water storage in cold regions of the Earth. Although snowfall is the most critical input for the cryosphere, the phenology of snowfall, or potential snowfall phenology (PSP), has not been thoroughly studied, and there is a lack of indicators for PSP. For this reason, we have proposed three innovative indicators, namely, the start of potential snowfall season (SPSS), the end of potential snowfall season (EPSS), and the length of potential snowfall season (LPSS), to characterize the PSP. We then explored the spatial–temporal variation in all three PSP indicators in the past, present, and future across the Chinese Tianshan mountainous region (CTMR) based on the observed daily air temperature from 26 meteorological stations during 1961–2017/2020 combined with data from 14 models from CMIP6 (Phase 6 of the Coupled Model Intercomparison Project) under four different scenarios (SSP126, SSP245, SSP370, and SSP585, where SSP represents Shared Socioeconomic Pathway) during 2021–2100. The study showed that the SPSS, EPSS, and LPSS indicators could accurately describe the PSP characteristics across the study area. In the past and present, the potential snowfall season started on 2 November, ended on 18 March, and lasted for about 4.5 months across the CTMR on average. During 1961–2017/2020, the rate of advancing the EPSS (−1.6 d per decade) was faster than that of postponing the SPSS (1.2 d per decade). It was also found that there was a significant delay in the starting time (2–13 d) and advancement in the ending time (1–13 d), respectively, resulting in a reduction of 3–26 d for the LPSS. The potential snowfall season started earlier, ended later, and lasted longer in the north and center compared with the south. Similarly, the SPSS, EPSS, and LPSS indicators are also expected to vary under the four emission scenarios during 2021–2100. Under the highest emission scenario, SSP585, the starting time is expected to be postponed by up to 41 d, while the ending time is expected to be advanced by up to 23 d across the study area. This change is expected to reduce the length of the potential snowfall season by up to 61 d (about 2 months), and the length of the potential snowfall season will only last 2.5 months in the 2100s under the SSP585 scenario. The length of the potential snowfall season in the west and southwest of the CTMR will be compressed by more days due to a more delayed starting time and an advanced ending time under all four scenarios. This suggests that, with constant snowfall intensity, annual total snowfall may decrease, including the amount and frequency, leading to a reduction in snow cover or mass, which will ultimately contribute to more rapid warming through the lower reflectivity to solar radiation. This research provides new insights into capturing the potential snowfall phenology in the alpine region and can be easily extended to other snow-dominated areas worldwide. It can also help inform snowfall monitoring and early warning for solid water resources.

Funder

National Natural Science Foundation of China

Science and Technology Department of Gansu Province

Gansu Education Department

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3