Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia
-
Published:2018-05-04
Issue:9
Volume:15
Page:2691-2722
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Castro-Morales Karel, Kleinen ThomasORCID, Kaiser Sonja, Zaehle SönkeORCID, Kittler Fanny, Kwon Min JungORCID, Beer ChristianORCID, Göckede MathiasORCID
Abstract
Abstract. Wetlands of northern high latitudes are ecosystems highly vulnerable to climate change. Some degradation effects include soil hydrologic changes due to permafrost thaw, formation of deeper active layers, and rising topsoil temperatures that accelerate the degradation of permafrost carbon and increase in CO2 and CH4 emissions. In this work we present 2 years of modeled year-round CH4 emissions into the atmosphere from a Northeast Siberian region in the Russian Far East. We use a revisited version of the process-based JSBACH-methane model that includes four CH4 transport pathways: plant-mediated transport, ebullition and molecular diffusion in the presence or absence of snow. The gas is emitted through wetlands represented by grid cell inundated areas simulated with a TOPMODEL approach. The magnitude of the summertime modeled CH4 emissions is comparable to ground-based CH4 fluxes measured with the eddy covariance technique and flux chambers in the same area of study, whereas wintertime modeled values are underestimated by 1 order of magnitude. In an annual balance, the most important mechanism for transport of methane into the atmosphere is through plants (61 %). This is followed by ebullition ( ∼ 35 %), while summertime molecular diffusion is negligible (0.02 %) compared to the diffusion through the snow during winter ( ∼ 4 %). We investigate the relationship between temporal changes in the CH4 fluxes, soil temperature, and soil moisture content. Our results highlight the heterogeneity in CH4 emissions at landscape scale and suggest that further improvements to the representation of large-scale hydrological conditions in the model will facilitate a more process-oriented land surface scheme and better simulate CH4 emissions under climate change. This is especially necessary at regional scales in Arctic ecosystems influenced by permafrost thaw.
Funder
Bundesministerium für Bildung und Forschung FP7 Environment FP7 People: Marie-Curie Actions AXA Research Fund
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference107 articles.
1. Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance - A practical guide to measurement and data analysis, Springer, Dordrecht, Heidelberg, London, New York, 2012. 2. Beer, C.: Soil science: the Arctic carbon count, Nat. Geosci., 1, 569–570, https://doi.org/10.1038/ngeo292, 2008. 3. Berestovskaya, I. I., Rusanov, I. I., Vasil'eva, L. V., and Pimenov, N. V.: The processes of methane production and oxidation in the soils of the Russian Arctic tundra, Microbiology, 74, 221–229, https://doi.org/10.1007/s11021-005-0055-2, 2005. 4. Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 5. Blanc-Betes, E., Welker, J. M., Sturchio, N. C., Chanton, J. P., and Gonzalez-Meler, M. A.: Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra, Glob. Change Biol., 22, 2818–2833, https://doi.org/10.1111/gcb.13242, 2016.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|