Global distribution and radiative forcing of soil dust aerosols in the Last Glacial Maximum simulated by the aerosol climate model
Author:
Takemura T.,Egashira M.,Matsuzawa K.,Ichijo H.,O'ishi R.,Abe-Ouchi A.
Abstract
Abstract. The integrated simulation for the global distribution and radiative forcing of soil dust aerosols in the Last Glacial Maximum (LGM) is done by an aerosol climate model, SPRINTARS, in this study. It is compared with another simulation in the present climate condition. The global total emission flux of soil dust aerosols in the LGM is simulated to be about 2.4 times as large as that in the present climate, and the simulated deposition flux is in general agreement with estimations from ice core and marine sediment samplings though it might be underestimated over the Antarctic. The calculated direct radiative forcing of soil dust aerosols in the LGM is close to zero at the tropopause and −0.4 W m−2 at the surface, which are about twice as large as those in the present climate. SPRINTARS also includes the microphysical parameterizations of the cloud-aerosol interaction both for liquid water and ice crystals, which affect the radiation budget. The positive radiative forcing of the indirect effect due to soil dust aerosols, that is mainly caused by a role of ice nuclei, is simulated to be smaller in the LGM than in the present. It is suggested that atmospheric dust might contribute to the cold climate during the glacial periods both through the direct and indirect effects, relative to the interglacial periods.
Publisher
Copernicus GmbH
Reference49 articles.
1. Andersen, K. K., Armengaud, A., and Genthon, C.: Atmospheric dust under glacial and interglacial conditions, Geophys. Res. Lett., 25, 2281–2284, 1998. 2. Andreae, M. O.: Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate, in: Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, edited by: Levine, J. S., MIT Press, Cambridge, Mass., USA, 3–21, 1991. 3. Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E., and Barkov, N. I.: Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6, Earth Planet. Sc. Lett., 146, 573–589, 1997. 4. Berry, E. X.: Cloud droplet growth by collection, J. Atmos. Sci., 24, 688–701, 1967. 5. Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\\^iné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, 2007.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|