Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l)

Author:

Magnin F.ORCID,Deline P.,Ravanel L.,Noetzli J.ORCID,Pogliotti P.

Abstract

Abstract. Permafrost and related thermo-hydro-mechanical processes are thought to influence high alpine rock wall stability, but a lack of field measurements means that the characteristics and processes of rock wall permafrost are poorly understood. To help remedy this situation, in 2005 work began to install a monitoring system at the Aiguille du Midi (3842 m a.s.l). This paper presents temperature records from nine surface sensors (eight years of records) and three 10 m deep boreholes (4 years of records), installed at locations with different surface and bedrock characteristics. In line with previous studies, our temperature data analyses showed that: micro-meteorology controls the surface temperature, active layer thicknesses are directly related to aspect and ranged from <2 m to nearly 6 m, and that thin accumulations of snow and open fractures are cooling factors. Thermal profiles empirically demonstrated the coexistence within a single rock peak of warm and cold permafrost (about −1.5 to −4.5 °C at 10 m depth) and the resulting lateral heat fluxes. Our results also extended current knowledge of the effect of snow, in that we found similar thermo-insulation effects as reported for gentle mountain areas. Thick snow warms shaded areas, and may reduce active layer refreezing in winter and delay its thawing in summer. However, thick snow thermo-insulation has little effect compared to the high albedo of snow which leads to cooler conditions at the rock surface in areas exposed to the sun. A consistent inflection in the thermal profiles reflected the cooling effect of an open fracture in the bedrock, which appeared to act as a thermal cutoff in the sub-surface thermal regime. Our field data are the first to be obtained from an Alpine permafrost site where borehole temperatures are below −4 °C, and represent a first step towards the development of strategies to investigate poorly known aspects in steep bedrock permafrost such as the effects of snow cover and fractures.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3