Comparison of different base flow separation methods in a lowland catchment

Author:

Gonzales A. L.,Nonner J.,Heijkers J.,Uhlenbrook S.

Abstract

Abstract. Assessment of water resources available in different storages and moving along different pathways in a catchment is important for its optimal use and protection, and also for the prediction of floods and low flows. Moreover, understanding of the runoff generation processes is essential for assessing the impacts of climate and land use changes on the hydrological response of a catchment. Many methods for base flow separation exist, but hardly one focuses on the specific behaviour of temperate lowland areas. This paper presents the results of a base flow separation study carried out in a lowland area in the Netherlands. In this study, field observations of precipitation, groundwater and surface water levels and discharges, together with tracer analysis are used to understand the runoff generation processes in the catchment. Several tracer and non-tracer based base flow separation methods were applied to the discharge time series, and their results are compared. The results show that groundwater levels react fast to precipitation events in this lowland area with shallow groundwater tables. Moreover, a good correlation was found between groundwater levels and discharges suggesting that most of the measured discharge also during floods comes from groundwater storage. It was estimated using tracer hydrological approaches that approximately 90% of the total discharge is groundwater displaced by event water mainly infiltrating in the northern part of the catchment, and only the remaining 10% is surface runoff. The impact of remote recharge causing displacement of near channel groundwater during floods could also be motivated with hydraulic approximations. The results show further that when base flow separation is meant to identify groundwater contributions to stream flow, process based methods (e.g. the rating curve method; Kliner and Knezek, 1974) are more reliable than other simple non-tracer based methods. Also, the recursive filtering method (proposed by Eckhardt, 2005) can be calibrated well using the results of tracer investigation giving good results. Consequently, non-tracer based base flow separation methods that can be validated for some events may provide a powerful tool for groundwater assessment or model calibration/validation in lowland areas.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3