Cutout as augmentation in contrastive learning for detecting burn marks in plastic granules

Author:

Jin Muen,Heizmann Michael

Abstract

Abstract. Plastic granules are a common delivery form for creating products in industries such as the plastic manufacturing, construction and automotive ones. In the corresponding sorting process of plastic granules, diverse defect types could appear. Burn marks, which potentially lead to weakened structural integrity of the plastic, are one of the most common types. Thus, plastic granules with burn marks should be filtered out during the sorting process. Artificial intelligence (AI)-based anomaly detection approaches are widely used in the field of visual-based sorting due to the higher accuracy and lower requirement of expert knowledge compared with classic rule-based algorithms (Chandola et al., 2009). In this contribution, a simple data augmentation strategy, cutout, is implemented as a way of simulating defects when combined with a contrastive learning-based methodology and is proven to improve the accuracy of the anomaly detection of burn marks. Different variants of cutout are also evaluated. Specifically, synthetic image data are used due to the lack of real data.

Publisher

Copernicus GmbH

Reference23 articles.

1. Caron, M., Bojanowski, P., Joulin, A., and Douze, M.: Deep clustering for unsupervised learning of visual features, in: Proceedings of the European conference on computer vision (ECCV), 8 September 2018, Munich, Germany, Springer, Cham, 132–149, https://doi.org/10.1007/978-3-030-01264-9_9, 2018.​​​​​​​

2. Chandola, V., Banerjee, A., and Kumar, V.: Anomaly detection: A survey[J]. ACM computing surveys (CSUR), https://doi.org/10.1145/1541880.1541882, 2009.

3. Chen, T., Kornblith, S., Norouzi, M., and Hinton, G.: A simple framework for contrastive learning of visual representations, in: International conference on machine learning, PMLR, 12 July 2020, Vienna, Austria, 1597–1607, arXiv [preprint], https://doi.org/10.48550/arXiv.2011.02578​​​​​​​, 4 November 2020.​​​​​​​

4. DeVries, T. and Taylor, G. W.: Improved regularization of convolutional neural networks with cutout, arXiv [preprint], https://doi.org/10.48550/arXiv.1708.04552, 15 August 2017.

5. Gidaris, S., Singh, P., and Komodakis, N.: Unsupervised representation learning by predicting image rotations, arXiv [preprint], https://doi.org/10.48550/arXiv.1803.07728, 21 March 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3