Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms
-
Published:2014-02-21
Issue:4
Volume:11
Page:1007-1020
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Bressac M., Guieu C.ORCID, Doxaran D., Bourrin F., Desboeufs K., Leblond N., Ridame C.
Abstract
Abstract. Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC–dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3–6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42–50% of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference99 articles.
1. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002. 2. Arnarson, T. S. and Keil, R. G.: Mechanisms of pore water organic matter adsorption to montmorillonite, Mar. Chem., 71, 309–320, 2000. 3. Arnarson, T. S. and Keil, R. G.: Influence of organic-mineral aggregates on microbial degradation of the dinoflagellate Scrippsiella trochoidea, Geochim. Cosmochim. Ac., 69, 2111–2117, 2005. 4. Bergametti, G., Gomes, L., Remoudaki, E., Desbois, M., Martin, D., and Buat-Ménard, P.: Present, transport and deposition patterns of African dusts to the north-western Mediterranean, in: Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport, edited by: Leinen, M. and Sarnthein, M., Kluwer, 227–252, 1989. 5. Bishop, J. K. B., Davis, E. R., and Sherman, J. T.: Robotic Observations of Dust Storm Enhancement of Carbon Biomass in the North Pacific, Science, 298, 817–821, https://doi.org/10.1126/science.1074961, 2002.
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|