Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA

Author:

Margason Andrew A.,Anders Alison M.ORCID,Conrick Robert J. C.,Roe Gerard H.

Abstract

Abstract. Glaciers are sensitive to temporal climate variability. Glacier sensitivity to spatial variability in climate has been much less studied. The Olympic Mountains of Washington state, USA, experience a pronounced orographic precipitation gradient, with modern annual precipitation ranging between ∼6500 and ∼500 mm water equivalent. In the Quinault valley, on the wet side of the range, a glacier extended onto the coastal plain, reaching a maximum position during the Early Wisconsin glaciation. On the dry side of the range, in the Elwha valley, there is no evidence of a large paleo-glacier during the Wisconsin glaciation. We hypothesize that asymmetry in the past glacier extent was driven by spatial variability in precipitation. To evaluate this hypothesis, we constrain the past precipitation gradient and model the glacier extent. We explore variability in observed and modeled precipitation gradients over timescales from 6 h to ∼100 yr. Across three datasets, basin-averaged precipitation in the Elwha is 54 % of that in the Quinault. Our analysis overwhelmingly indicates spatially coherent variability in precipitation across the peninsula. We conclude that the past precipitation gradient was likely similar to the modern gradient. We use a one-dimensional glacier flowline model, driven by sea level summer temperature and annual precipitation to approximate the glacier extent in the Quinault and Elwha valleys. We find several equilibrium states for the Quinault glacier at the mapped maximum position within paleoclimate constraints for cooling and drying, relative to present-day conditions. Assuming stable precipitation gradients, we model the Elwha glacier extent for the climates of these equilibria. At the warm end of the paleoclimate constraint (July average sea level temperature of 10.5 ∘C), a small valley glacier occurs in the high headwaters of the Elwha valley. Yet, for the cooler end of the allowable paleoclimate (July average sea level temperature of 7 ∘C), the Elwha glacier advances to a narrow notch in the valley, thickens, and rapidly extends far beyond the likely true maximum extent. Therefore, we suggest that the Early Wisconsin period was more likely to have been relatively warm because our models of the glacial extent are consistent with the past record of glaciation in both the Quinault valley and Elwha valley for warm conditions but inconsistent for cooler conditions. Alternatively, spatially variable drivers of ablation, including differences in cloudiness, could have contributed to past asymmetry in the glacier extent. Future research to constrain past precipitation gradients and evaluate their impact on glacier dynamics is needed to better interpret the climatic significance of past glaciation and to predict the future response of glaciers to climate change.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3