Automated riverbed composition analysis using deep learning on underwater images
-
Published:2023-11-01
Issue:6
Volume:11
Page:1061-1095
-
ISSN:2196-632X
-
Container-title:Earth Surface Dynamics
-
language:en
-
Short-container-title:Earth Surf. Dynam.
Author:
Ermilov Alexander A.,Benkő Gergely,Baranya Sándor
Abstract
Abstract. The sediment of alluvial riverbeds plays a significant role in river systems both in engineering and natural processes. However, the sediment composition can show high spatial and temporal heterogeneity, even on river-reach scale, making it difficult to representatively sample and assess. Conventional sampling methods are inadequate and time-consuming for effectively capturing the variability of bed surface texture in these situations. In this study, we overcome this issue by adopting an image-based deep-learning (DL) algorithm. The algorithm was trained to recognise the main sediment classes in videos that were taken along cross sections underwater in the Danube. A total of 27 riverbed samples were collected and analysed for validation. The introduced DL-based method is fast, i.e. the videos of 300–400 m long sections can be analysed within minutes with continuous spatial sampling distribution (i.e. the whole riverbed along the path is mapped with images in ca. 0.3–1 m2 overlapping windows). The quality of the trained algorithm was evaluated (i) mathematically by dividing the annotated images into test and validation sets and also via (ii) intercomparison with other direct (sieving of physical samples) and indirect sampling methods (wavelet-based image processing of the riverbed images), focusing on the percentages of the detected sediment fractions. For the final evaluation, the sieving analysis of the collected physical samples were considered the ground truth. After correcting for samples affected by bed armouring, comparison of the DL approach with 14 physical samples yielded a mean classification error of 4.5 %. In addition, based upon the visual evaluation of the footage, the spatial trend in the fraction changes was also well captured along the cross sections. Suggestions for performing proper field measurements are also given; furthermore, possibilities for combining the algorithm with other techniques are highlighted, briefly showcasing the multi-purpose nature of underwater videos for hydromorphological assessment.
Funder
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap Innovációs és Technológiai Minisztérium
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Geophysics
Reference90 articles.
1. Adams, J.: Gravel Size Analysis from Photographs, J. Hydraul. Div., 1979, 105, 1247–1255, https://doi.org/10.1061/JYCEAJ.0005283, 1979. 2. Baranya, S., Fleit, G., Józsa, J., Szalóky, Z., Tóth, B., Czeglédi, I., and Erős, T.: Habitat mapping of riverine fish by means of hydromorphological tools, Ecohydrology, 11, e2009, https://doi.org/10.1002/eco.2009, 2018. 3. Barnard, P., Rubin, D., Harney, J., and Mustain, N.: Field test comparison of an autocorrelation technique for determining grain size using a digital beachball camera versus traditional methods, Sediment. Geol., 201, 180–195, 2007. 4. Benjankar, R., Tonina, D., and Mckean, J.: One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions, Earth Surf. Proc. Land., 40, 340–356, 2015. 5. Benkő, G., Baranya, S., Török, T. G., and Molnár, B.: Folyami mederanyag szemösszetételének vizsgálata Mély Tanulás eljárással drónfelvételek alapján (in English: Analysis of composition of riverbed material with Deep Learning based on drone video footages), Hidrológiai Közlöny, 100, 61–69, 2020.
|
|