Estimating surface water availability in high mountain rock slopes using a numerical energy balance model

Author:

Ben-Asher MatanORCID,Magnin FlorenceORCID,Westermann Sebastian,Bock JosuéORCID,Malet Emmanuel,Berthet Johan,Ravanel Ludovic,Deline Philip

Abstract

Abstract. Water takes part in most physical processes that shape mountainous periglacial landscapes and initiation of mass-wasting processes. An observed increase in rockfall activity in high mountain regions was previously linked to permafrost degradation, and water that infiltrates into rock fractures is one of the likely drivers of processes related to thawing and destabilization. However, there is very little knowledge of the quantity and timing of water availability for infiltration into steep rock slopes. This knowledge gap originates from the complex meteorological, hydrological, and thermal processes that control snowmelt, as well as challenging access and data acquisition in extreme alpine environments. Here we use field measurements and numerical modeling to simulate the energy balance and hydrological fluxes on a steep high-elevation permafrost-affected rock slope at Aiguille du Midi (3842 m a.s.l, France), in the Mont Blanc massif. Our results provide new information about water balance at the surface of steep rock slopes. Model results suggest that only ∼ 25 % of the snowfall accumulates in our study site; the remaining ∼ 75 % is likely transported downslope by wind and gravity. The snowpack thickness was found to decrease with surface slopes between 40 and 70∘. We found that among all water fluxes, sublimation is the main process of snowpack mass loss at our study site. Snowmelt occurs between spring and late summer, but most of it may not reach the rock surface due to refreezing and the formation of an impermeable ice layer at the base of the snowpack, which was observed at the field site. The annual snowmelt that is available for infiltration (i.e., effective snowmelt) is highly variable in the simulated years 1959–2021, and its onset occurs mostly between May and August and ends before October. By applying the model to a range of altitudes, we show that effective snowmelt is the main source of water for infiltration above 3600 m a.s.l.; below, direct rainfall on the snow-free surface is the dominant source. This change from snowmelt- to rainfall-dominated water input leads to an abrupt, nonlinear increase in water availability at altitudes below 3600 m a.s.l and may point to higher sensitivity of permafrost-affected rock slopes to climate change at these altitudes.

Funder

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3