Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest

Author:

Vestenius M.,Hellén H.ORCID,Levula J.,Kuronen P.,Helminen K.J.,Nieminen T.ORCID,Kulmala M.ORCID,Hakola H.

Abstract

Abstract. Biogenic acids were measured in aerosols at the SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations II) station in Finland from June 2010 until October 2011. The analysed organic acids were pinic, pinonic, caric, limonic and caryophyllinic acids from oxidation of α-pinene, β-pinene, limonene, Δ3-carene and β-caryophyllene, respectively. Due to a lack of authentic standards, the caric, limonic and caryophyllinic acids were synthesised for this study. The mean, median, maximum and minimum concentrations (ng m−3) were as follows: limonic acid (1.26, 0.80, 16.5, below detection limit (< LOD)), pinic acid (5.53, 3.25, 31.4, 0.15), pinonic acid (9.87, 5.07, 80.1, < LOD), caric acid (5.52, 3.58, 49.8, < LOD), and caryophyllinic acid (7.87, 6.07, 86.1, < LOD). The highest terpenoic acid concentrations were measured during the summer. Of the acids, β-caryophyllinic acid showed the highest concentrations in summer, but during other times of the year pinonic acid was the most abundant. The β-caryophyllinic acid contribution was higher than expected, based on the emission calculations of the precursor compounds and yields from oxidation experiments in smog chambers, implying that the β-caryophyllene emissions or β-caryophyllinic acid yields were underestimated. The concentration ratios between terpenoic acids and their precursors were clearly lower in summer than in winter, indicating stronger partitioning to the aerosol phase during the cold winter season. The β-caryophyllinic and caric acids were weakly correlated with the accumulation-mode particle number concentrations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3