Enhancement of atmospheric H<sub>2</sub>SO<sub>4</sub> / H<sub>2</sub>O nucleation: organic oxidation products versus amines
-
Published:2014-01-22
Issue:2
Volume:14
Page:751-764
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Berndt T.,Sipilä M.,Stratmann F.,Petäjä T.,Vanhanen J.,Mikkilä J.,Patokoski J.,Taipale R.,Mauldin III R. L.,Kulmala M.
Abstract
Abstract. Atmospheric H2SO4 / H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research – Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a possible background amine concentration in the order of 107–108 molecule cm−3 throughout the experiments has to be taken into account. In a first set of investigations, ozonolysis of olefins (tetramethylethylene, 1-methyl-cyclohexene, α-pinene and limonene) for close to atmospheric concentrations, served as the source of OH radicals and possibly other oxidants initiating H2SO4 formation starting from SO2. The oxidant generation is inevitably associated with the formation of organic oxidation products arising from the parent olefins. These products (first generation mainly) showed no clear effect on the number of nucleated particles within a wide range of experimental conditions for H2SO4 concentrations higher than ~107 molecule cm−3. Also the early growth process of the nucleated particles was not significantly influenced by the organic oxidation products in line with the expected growth by organic products using literature data. An additional, H2SO4-independent process of particle (nano-CN) formation was observed in the case of α-pinene and limonene ozonolysis for H2SO4 concentrations smaller than ~107 molecule cm−3. Furthermore, the findings confirm the appearance of an additional oxidant for SO2 beside OH radicals, very likely stabilized Criegee Intermediates (sCI). A second set of experiments has been performed in the presence of added amines in the concentrations range of a few 107–1010 molecule cm−3 applying photolytic OH radical generation for H2SO4 production without addition of other organics. All amines showed significant nucleation enhancement with increasing efficiency in the order pyridine < aniline < dimethylamine < trimethylamine. This result supports the idea of H2SO4 cluster stabilization by amines due to strong H2SO4↔amine interactions. On the other hand, this study indicates that for organic oxidation products (in presence of the possible amine background as stated) a distinct H2SO4 / H2O nucleation enhancement can be due to increased H2SO4 formation caused by additional organic oxidant production (sCI) rather than by stabilization of H2SO4 clusters due to H2SO4↔organics interactions.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference68 articles.
1. Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Trostl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P. L., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359–363, 2013. 2. Anglada, J. M., Aplincourt, P., Bofill, J. M., and Cremer, D.: Atmospheric Formation of OH Radicals and H2O2 from Alkene Ozonolysis under Humid Conditions, Chem. Phys. Chem., 2, 215–221, 2002. 3. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, 1986. 4. Atkinson, R., Aschmann, S. M., and Pitts Jr., J. N.: Rate constants for the gas-phase reactions of the OH radical with a series of monoterpenes at 294 ± 1 K, Int. J. Chem. Kinet., 18, 287–299, 1986. 5. Atkinson, R., Aschmann, S. M., Arey, J., and Shorees, B.: Formation of OH radicals in the gas-phase reactions of O3 with a series of terpenes, J. Geophys. Res., 97, 6065–6073, 1992.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|