Shelf–Basin interaction along the East Siberian Sea
-
Published:2017-04-27
Issue:2
Volume:13
Page:349-363
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Author:
Anderson Leif G., Björk Göran, Holby Ola, Jutterström Sara, Mörth Carl Magnus, O'Regan MattORCID, Pearce ChristofORCID, Semiletov Igor, Stranne ChristianORCID, Stöven Tim, Tanhua TosteORCID, Ulfsbo Adam, Jakobsson MartinORCID
Abstract
Abstract. Extensive biogeochemical transformation of organic matter takes place in the shallow continental shelf seas of Siberia. This, in combination with brine production from sea-ice formation, results in cold bottom waters with relatively high salinity and nutrient concentrations, as well as low oxygen and pH levels. Data from the SWERUS-C3 expedition with icebreaker Oden, from July to September 2014, show the distribution of such nutrient-rich, cold bottom waters along the continental margin from about 140 to 180° E. The water with maximum nutrient concentration, classically named the upper halocline, is absent over the Lomonosov Ridge at 140° E, while it appears in the Makarov Basin at 150° E and intensifies further eastwards. At the intercept between the Mendeleev Ridge and the East Siberian continental shelf slope, the nutrient maximum is still intense, but distributed across a larger depth interval. The nutrient-rich water is found here at salinities of up to ∼ 34.5, i.e. in the water classically named lower halocline. East of 170° E transient tracers show significantly less ventilated waters below about 150 m water depth. This likely results from a local isolation of waters over the Chukchi Abyssal Plain as the boundary current from the west is steered away from this area by the bathymetry of the Mendeleev Ridge. The water with salinities of ∼ 34.5 has high nutrients and low oxygen concentrations as well as low pH, typically indicating decay of organic matter. A deficit in nitrate relative to phosphate suggests that this process partly occurs under hypoxia. We conclude that the high nutrient water with salinity ∼ 34.5 are formed on the shelf slope in the Mendeleev Ridge region from interior basin water that is trapped for enough time to attain its signature through interaction with the sediment.
Publisher
Copernicus GmbH
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference39 articles.
1. Aagaard, K., Coachman, L. K., and Carmack, E. C.: On the halocline of the Arctic Ocean, Deep-Sea Res., 28, 529–545, 1981. 2. Anderson, L. G., Björk, G., Jutterström, S., Pipko, I., Shakhova, N., Semiletov, I., and Wåhlström, I.: East Siberian Sea, an Arctic region of very high biogeochemical activity, Biogeosciences, 8, 1745–1754, https://doi.org/10.5194/bg-8-1745-2011, 2011. 3. Anderson, L. G., Andersson, P., Björk, G., Jones, E. P., Jutterström, S., and Wåhlström, I.: Source and formation of the upper halocline of the Arctic Ocean, J. Geophys. Res., 118, 410–421, https://doi.org/10.1029/2012JC008291, 2013. 4. Bates, N. R.: Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean, J. Geophys. Res., 111, C10013, https://doi.org/10.1029/2005JC003083, 2006. 5. Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H.J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, [1996-01-01; 2010-12-31], National Snow and Ice Data Center, Boulder, Colorado USA, Digital media, updated yearly, 1996.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|