Creating HiRISE digital elevation models for Mars using the open-source Ames Stereo Pipeline

Author:

Hepburn Adam J.ORCID,Holt TomORCID,Hubbard BrynORCID,Ng FelixORCID

Abstract

Abstract. The present availability of sub-decametre digital elevation models on Mars – crucial for the study of surface processes – is scarce. In contrast to low-resolution global datasets, such models enable the study of landforms <10 km in size, which is the primary scale at which geomorphic processes have been active on Mars over the last 10–20 Myr . Stereogrammetry is a means of producing digital elevation models from stereo pairs of images. The HiRISE camera on board the Mars Reconnaissance Orbiter has captured >3000 stereo pairs at 0.25 m pixel−1 resolution, enabling the creation of high-resolution digital elevation models (1–2 m pixel−1). Hitherto, only ∼500 of these pairs have been processed and made publicly available. Existing pipelines for the production of digital elevation models from stereo pairs, however, are built upon commercial software, rely upon sparsely available intermediate data, or are reliant on proprietary algorithms. In this paper, we present and test the output of a new pipeline for producing digital elevation models from HiRISE stereo pairs that is built entirely upon the open-source NASA Ames Stereo Pipeline photogrammetric software, making use of freely available data for cartographic rectification. This pipeline is designed for simple application by researchers interested in the use of high-resolution digital elevation models. Implemented here on a research computing cluster, this pipeline can also be used on consumer-grade UNIX computers. We produce and evaluate four digital elevation models using the pipeline presented here. Each are globally well registered, with accuracy similar to those of digital elevation models produced elsewhere.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3