Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait

Author:

Zavialov Ivan,Osadchiev AlexanderORCID,Sedakov Roman,Barnier BernardORCID,Molines Jean-MarcORCID,Belokopytov Vladimir

Abstract

Abstract. The Sea of Azov is a small, shallow, and freshened sea that receives a large freshwater discharge. Under certain external forcing conditions low-salinity waters from the Sea of Azov flow into the north-eastern part of the Black Sea through the narrow Kerch Strait and form a surface-advected buoyant plume. Water flow in the Kerch Strait also regularly occurs in the opposite direction, which results in the spreading of a bottom-advected plume of saline and dense waters from the Black Sea into the Sea of Azov. In this study we focus on the physical mechanisms that govern water exchange through the Kerch Strait and analyse the dependence of its direction and intensity on external forcing conditions. Analysis of satellite imagery, wind data, and numerical modelling shows that water exchange in the Kerch Strait is governed by a wind-induced barotropic pressure gradient. Water flow through the shallow and narrow Kerch Strait is a one-way process for the majority of the time. Outflow from the Sea of Azov to the Black Sea is induced by moderate and strong north-easterly winds, while flow into the Sea of Azov from the Black Sea occurs during wind relaxation periods. The direction and intensity of water exchange have wind-governed synoptic and seasonal variability, and they do not depend on the rate of river discharge to the Sea of Azov on an intra-annual timescale. The analysed data reveal dependencies between wind forcing conditions and spatial characteristics of the buoyant plume formed by the outflow from the Sea of Azov.

Funder

Russian Science Foundation

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3