Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica

Author:

Grazioli JacopoORCID,Genthon ChristopheORCID,Boudevillain BriceORCID,Duran-Alarcon Claudio,Del Guasta Massimo,Madeleine Jean-Baptiste,Berne Alexis

Abstract

Abstract. The first results of a campaign of intensive observation of precipitation in Dumont d'Urville, Antarctica, are presented. Several instruments collected data from November 2015 to February 2016 or longer, including a polarimetric radar (MXPol), a Micro Rain Radar (MRR), a weighing gauge (Pluvio2), and a Multi-Angle Snowflake Camera (MASC). These instruments collected the first ground-based measurements of precipitation in the region of Adélie Land (Terre Adélie), including precipitation microphysics. Microphysical observations during the austral summer 2015/2016 showed that, close to the ground level, aggregates are the dominant hydrometeor type, together with small ice particles (mostly originating from blowing snow), and that riming is a recurring process. Eleven percent of the measured particles were fully developed graupel, and aggregates had a mean riming degree of about 30 %. Spurious precipitation in the Pluvio2 measurements in windy conditions, leading to phantom accumulations, is observed and partly removed through synergistic use of MRR data. The yearly accumulated precipitation of snow (300 m above ground), obtained by means of a local conversion relation of MRR data, trained on the Pluvio2 measurement of the summer period, is estimated to be 815 mm of water equivalent, with a confidence interval ranging between 739.5 and 989 mm. Data obtained in previous research from satellite-borne radars, and the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) provide lower yearly totals: 655 mm for ERA-Interim and 679 mm for the climatological data over DDU. ERA-Interim overestimates the occurrence of low-intensity precipitation events especially in summer, but it compensates for them by underestimating the snowfall amounts carried by the most intense events. Overall, this paper provides insightful examples of the added values of precipitation monitoring in Antarctica with a synergistic use of in situ and remote sensing measurements.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3