DMS cycle in the marine ocean-atmosphere system – a global model study

Author:

Kloster S.,Feichter J.,Maier-Reimer E.,Six K. D.,Stier P.,Wetzel P.

Abstract

Abstract. A global coupled ocean-atmosphere modeling system is established to study the production of dimethylsulfide (DMS) in the ocean, the DMS flux to the atmosphere, and the resulting sulfur concentrations in the atmosphere. The DMS production and consumption processes in the ocean are simulated in the marine biogeochemistry model HAMOCC5, embedded in a ocean general circulation model (MPI-OM). The atmospheric model ECHAM5 is extended by the microphysical aerosol model HAM, treating the sulfur chemistry in the atmosphere and the evolution of the microphysically interacting internally- and externally mixed aerosol populations. We simulate a global annual mean DMS sea surface concentration of 1.8 nmol l−1, a DMS emission of 28 Tg(S) yr−1, a DMS burden in the atmosphere of 0.077 Tg(S), and a DMS lifetime of 1.0 days. To quantify the role of DMS in the atmospheric sulfur cycle we simulate the relative contribution of DMS-derived SO2 and SO42− to the total atmospheric sulfur concentrations. DMS contributes 25% to the global annually averaged SO2 column burden. For SO42− the contribution is 27%. The coupled model setup allows the evaluation of the simulated DMS quantities with measurements taken in the ocean and in the atmosphere. The simulated global distribution of DMS sea surface concentrations compares reasonably well with measurements. The comparison to SO42− surface concentration measurements in regions with a high DMS contribution to SO42− shows an overestimation by the model. This overestimation is most pronounced in the biologically active season with high DMS emissions and most likely caused by a too high simulated SO42− yield from DMS oxidation.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3