Boundary layer structure and stability classification validated with CO<sub>2</sub> concentrations over the Northern Spanish Plateau

Author:

Pérez I. A.,Sánchez M. L.,García M. Á.,de Torre B.

Abstract

Abstract. A description of the lower boundary layer is vital to enhance our understanding of dispersion processes. In this paper, Radio Acoustic Sounding System sodar measurements obtained over three years were used to calculate the Brunt-Väisälä frequency and the Monin-Obukhov length. The Brunt-Väisälä frequency enabled investigation of the structure of this layer. At night, several layers were noticeable and the maximum was observed at the first level, 40 m, whereas during the day, it was present at about 320 m. The Monin-Obukhov length was calculated with the four first levels measured, 40–100 m, by an original iterative method and used to establish four stability classes: drainage, extremely stable, stable and unstable. Wind speed and temperature median profiles linked to these classes were also presented. Wind speeds were the lowest, but temperatures were the highest and inversions were intense at night in drainage situations. However, unstable situations were linked to high wind speeds and superadiabatic temperature profiles. Detrended CO2 concentrations were used to determine the goodness of the classification proposed evidencing values which under drainage at night in spring were nearly 28 ppm higher than those corresponding to unstable situations. Finally, atmosphere structure was presented for the proposed stability classes and related with wind speed profiles. Under extremely stable situations, low level jets were coupled to the surface, with median wind speeds below 8 m s−1 and cores occasionally at 120 m. However, jets were uncoupled in stable situations, wind speed medians were higher than 11 m s−1 and their core heights were around 200 m.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference34 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3