Simultaneous imaging of aurora on small scale in OI (777.4 nm) and N<sub>2</sub>1P to estimate energy and flux of precipitation

Author:

Lanchester B. S.,Ashrafi M.,Ivchenko N.

Abstract

Abstract. Simultaneous images of the aurora in three emissions, N21P (673.0 nm), OII (732.0 nm) and OI (777.4 nm), have been analysed; the ratio of atomic oxygen to molecular nitrogen has been used to provide estimates of the changes in energy and flux of precipitation within scale sizes of 100 m, and with temporal resolution of 32 frames per second. The choice of filters for the imagers is discussed, with particular emphasis on the choice of the atomic oxygen line at 777.4 nm as one of the three emissions measured. The optical measurements have been combined with radar measurements and compared with the results of an auroral model, hence showing that the ratio of emission rates OI/N2 can be used to estimate the energy within the smallest auroral structures. In the event chosen, measurements were made from mainland Norway, near Troms\\o, (69.6 N, 19.2 E). The peak energies of precipitation were between 1–15 keV. In a narrow curling arc, it was found that the arc filaments resulted from energies in excess of 10 keV and fluxes of approximately 7 mW/m2. These filaments of the order of 100 m in width were embedded in a region of lower energies (about 5–10 keV) and fluxes of about 3 mW/m2. The modelling results show that the method promises to be most powerful for detecting low energy precipitation, more prevalent at the higher latitudes of Svalbard where the multispectral imager, known as ASK, is now installed.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference21 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine‐Scale Electric Fields and Joule Heating From Observations of the Aurora;Journal of Geophysical Research: Space Physics;2023-01-30

2. The Great Aurora of 4 February 1872 observed by Angelo Secchi in Rome;Journal of Space Weather and Space Climate;2022

3. Studying nighttime nitric oxide emission at 5.3 μm during the geomagnetic storm in the Earth’s ionosphere;Astrophysics and Space Science;2022-01

4. Energetic particle dynamics, precipitation, and conductivity;Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System;2022

5. Fine-scale dynamics of fragmented aurora-like emissions;Annales Geophysicae;2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3