Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone

Author:

Dashora N.,Sharma S.,Dabas R. S.,Alex S.,Pandey R.

Abstract

Abstract. Results pertaining to the response of the equatorial and low latitude ionosphere to a major geomagnetic storm that occurred on 15 May 2005 are presented. These results are also the first from the Indian zone in terms of (i) GPS derived total electron content (TEC) variations following the storm (ii) Local low latitude electrodynamics response to penetration of high latitude convection electric field (iii) effect of storm induced traveling atmospheric disturbances (TAD's) on GPS-TEC in equatorial ionization anomaly (EIA) zone. Data set comprising of ionospheric TEC obtained from GPS measurements, ionograms from an EIA zone station, New Delhi (Geog. Lat. 28.42° N, Geog. Long. 77.21° E), ground based magnetometers in equatorial and low latitude stations and solar wind data obtained from Advanced Composition Explorer (ACE) has been used in the present study. GPS receivers located at Udaipur (Geog. Lat. 24.73° N, Geog. Long. 73.73° E) and Hyderabad (Geog. Lat. 17.33° N, Geog. Long. 78.47° E) have been used for wider spatial coverage in the Indian zone. Storm induced features in vertical TEC (VTEC) have been obtained comparing them with the mean VTEC of quiet days. Variations in solar wind parameters, as obtained from ACE and in the SYM-H index, indicate that the storm commenced on 15 May 2005 at 02:39 UT. The main phase of the storm commenced at 06:00 UT on 15 May with a sudden southward turning of the Z-component of interplanetary magnetic field (IMF-Bz) and subsequent decrease in SYM-H index. The dawn-to-dusk convection electric field of high latitude origin penetrated to low and equatorial latitudes simultaneously as corroborated by the magnetometer data from the Indian zone. Subsequent northward turning of the IMF-Bz, and the penetration of the dusk-to-dawn electric field over the dip equator is also discernible. Response of the low latitude ionosphere to this storm may be characterized in terms of (i) enhanced background level of VTEC as compared to the mean VTEC, (ii) peaks in VTEC and foF2 within two hours of prompt penetration of electric field and (iii) wave-like modulations in VTEC and sudden enhancement in hmF2 within 4–5 h in to the storm. These features have been explained in terms of the modified fountain effect, local low latitude electrodynamic response to penetration electric field and the TIDs, respectively. The study reveals a strong positive ionospheric storm in the Indian zone on 15 May 2005. Consequences of such major ionospheric storms on the systems that use satellite based navigation solutions in low latitude, are also discussed.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3