Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport

Author:

Nakamura R.,Retinò A.,Baumjohann W.,Volwerk M.,Erkaev N.,Klecker B.,Lucek E. A.,Dandouras I.,André M.,Khotyaintsev Y.

Abstract

Abstract. We report on the evolution of dipolarization and associated disturbances of the near-Earth current sheet during a substorm on 27 October 2007, based upon Cluster multi-point, multi-scale observations of the night-side plasma sheet at X~−10 RE. Three dipolarization events were observed accompanied by activations on ground magnetograms at 09:07, 09:14, and 09:22 UT. We found that all these events consist of two types of dipolarization signatures: (1) Earthward moving dipolarization pulse, which is accompanied by enhanced rapid Earthward flux transport and is followed by current sheet disturbances with decrease in BZ and enhanced local current density, and subsequent (2) increase in BZ toward a stable level, which is more prominent at Earthward side and evolving tailward. During the 09:07 event, when Cluster was located in a thin current sheet, the dipolarization and fast Earthward flows were also accompanied by further thinning of the current sheet down to a half-thickness of about 1000 km and oscillation in a kink-like mode with a period of ~15 s and propagating duskward. Probable cause of this "flapping current sheet" is shown to be the Earthward high-speed flow. The oscillation ceased as the flow decreased and the field configuration became more dipolar. The later rapid flux transport events at 09:14 and 09:22 UT took place when the field configuration was initially more dipolar and were also associated with BZ disturbance and local current density enhancement, but to a lesser degree. Hence, current sheet disturbances induced by initial dipolarization pulses could differ, depending on the configuration of the current sheet.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference29 articles.

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3