Modelling of N<sub>2</sub>1P emission rates in aurora using various cross sections for excitation

Author:

Ashrafi M.,Lanchester B. S.,Lummerzheim D.,Ivchenko N.,Jokiaho O.

Abstract

Abstract. Measurements of N21P auroral emissions from the (4,1) and (5,2) bands have been made at high temporal and spatial resolution in the region of the magnetic zenith. The instrument used was the auroral imager ASK, situated at Ramfjordmoen, Norway (69.6 N, 19.2 E) on 22 October 2006. Measurements from the European Incoherent Scatter Radar (EISCAT) have been combined with the optical measurements, and incorporated into an ionospheric model to obtain height profiles of electron density and emission rates of the N21P bands. The radar data provide essential verification that the energy flux used in the model is correct. One of the most important inputs to the model is the cross section for excitation to the B3Πg electronic state, as well as the cross sections to higher states from which cascading into the B state occurs. The balance equations for production and loss of the populations of all levels in each state are solved in order to find the cascade contributions. Several sets of cross sections have been considered, and selected cross sections have been used to construct "emission" cross sections for the observed bands. The resulting brightnesses are compared with those measured by ASK. The importance of specific contributions from cascading is found, with more than 50% of the total brightness resulting from cascading. The cross sections used are found to produce a range of brightnesses well within the uncertainty of both the modelled and measured values.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference36 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3