Intermittency of storms and substorms: is it related to the critical behaviour?

Author:

Dobias P.,Wanliss J. A.

Abstract

Abstract. Intermittency is one of the possible means of quantifying dynamics of fractal processes. In this paper, the analysis of the intermittency of magnetospheric storms and substorms is presented. The analysis allows for a classification of the processes in terms of the power-law scaling of the magnitude of deviations of the index values from the values at quiet times (normal state), and the relative timings of occurrences of such deviations. These are expressed in terms of the co-dimension and the Fano factor. The relationship between the two is related to the nature of the processes behind the observed storm and substorm dynamics. The results suggest that there is a similarity between the two, and therefore it is possible that there are common dynamical processes behind the storms and substorms. In particular, it appears that both of them behave consistently with what would be expected for critical systems, which is consistent with the conclusions of several previous works.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference34 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractal Methods in Nonequilibrium Systems;Fractal Analysis - Applications and Updates [Working Title];2023-07-13

2. Efficient calculation of fractal properties via the Higuchi method;Nonlinear Dynamics;2022-06-23

3. A SOC based avalanche model to study the magnetosphere-ionosphere energy transfer and AE index fluctuations;NRIAG Journal of Astronomy and Geophysics;2021-11-24

4. On the Pre‐Magnetic Storm Signatures in NmF2 in Some Equatorial, Low‐ and Mid‐Latitude Stations;Journal of Geophysical Research: Space Physics;2021-08

5. Efficiency of Price Movements in Futures Markets;The Indian Economic Journal;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3